长江流域资源与环境 >> 2024, Vol. 33 >> Issue (1): 139-149.doi: 10.11870/cjlyzyyhj202401012

• 生态环境 • 上一篇    下一篇

GTWR模型联合地理探测的长三角地区PM2.5驱动因素研究

刘佳明,王洁*   

  1. (上海海洋大学海洋科学学院,上海 201306)
  • 出版日期:2024-01-20 发布日期:2024-02-01

Research on the Driving Factors of PM2.5 in the Yangtze River  Delta Based on GTWR Model Combined with Geographical Detector

LIU Jia-ming,WANG Jie   

  1. (School of Marine Science, Shanghai Ocean University, Shanghai 201306, China)
  • Online:2024-01-20 Published:2024-02-01

摘要: 采用2001~2020年全球高精度PM2.5卫星反演数据集,结合空间统计分析、地理探测器和时空地理加权模型(GTWR)等方法,探讨了长三角地区人口社会经济发展因素及气象因素对PM2.5的影响程度及时空异质性。结果表明:(1) GTWR模型考虑了时间尺度,在拟合效果方面优于传统的全局回归(OLS)和地理加权回归(GWR)模型;(2)地理探测器的探测q值能较为准确的定量说明各驱动因素对PM2.5的影响程度。在不同时期各因素q值呈现波动式变化,其中年末人口、公路货运量、年末用电量、气温的影响保持稳定增长趋势;(3)GTWR拟合结果显示,各因素对PM2.5的影响均存在正负效应,其中年末人口和气温正向效应显著,而公路货运量、年末用电量和相对湿度负向效应显著,其余因素均存在不同程度的波动变化。此外回归系数的区域性变化特征表明各驱动因素具有明显的时空异质性。

Abstract: Based on the global high-precision PM2.5 satellite inversion dataset from 2001 to 2020, in conjunction with spatial statistical analysis, geographic detector, and the geographically and temporally weighted regression(GTWR), this study examined the extent of influence and spatiotemporal heterogeneity of human socioeconomic and meteorological factors on PM2.5 in the Yangtze River Delta region. The findings were as follows:(1) The GTWR considered the temporal scale and demonstrated superior fitting performance compared to traditional global regression (OLS) and geographically weighted regression (GWR) models. (2)The geographical detector's q-value provided an accurate and quantitative explanation of the influence of each driving factor on PM2.5. The q-values of different factors exhibited fluctuating patterns across various time periods. Notably, the impact of population, road freight volume, electricity consumption, and temperature at the year-end maintained  a consistent upward trend.(3)The GTWR fitting results indicated that various factors had both positive and negative effects on PM2.5. Specifically, year-end population and temperature had significant positive effects, while road freight volume, electricity consumption, and relative humidity at the year-end had significant negative effects. Other factors demonstrated varying degrees of fluctuation. Moreover, the regional variation in regression coefficients suggested distinct spatial and temporal heterogeneity among the driving factors.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭政, 董平, 陆玉麒, 黄群芳, 马颖忆. 长三角集装箱港口体系演化及影响因素分析[J]. 长江流域资源与环境, 2018, 27(07): 1340 .
[2] 伍文琪, 罗贤, 黄玮。李运刚. 云南省水资源承载力评价与时空分布特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1385 .
[3] 王辉, 延军平, 王鹏涛, 武亚群. 多民族地区经济差异的空间格局演变[J]. 长江流域资源与环境, 2018, 27(07): 1390 .
[4] 王锐, 余涛, 杨忠芳, 侯青叶, 曾庆良, 马宏宏. 富硒土壤硒生物有效性及影响因素研究[J]. 长江流域资源与环境, 2018, 27(07): 1460 .
[5] 杨宏, 李会琳, 路璐. 嘉陵江(南充段)水体及其底泥中氨氧化微生物群落空间分布特征及其与环境因子关系[J]. 长江流域资源与环境, 2018, 27(08): 1836 .
[6] 付书科, 李小帆, 彭甲超, 张子悦, 陈 思. 基于动态因子分析法的长江三角洲城市群城镇化质量测度研究[J]. 长江流域资源与环境, 2018, 27(09): 1909 -1918 .
[7] 李恩康, 陆玉麒, 王 毅, 黄群芳, 郭 政. 城镇化对制度转型的影响——基于江苏13个市的脉冲响应函数分析[J]. 长江流域资源与环境, 2018, 27(09): 1919 -1927 .
[8] 魏国恩, 朱 翔, 贺清云. 环长株潭城市群空间联系演变特征与对策研究[J]. 长江流域资源与环境, 2018, 27(09): 1958 -1967 .
[9] 朱寅健. (新)环鄱阳湖区域交通网络通达性与旅游一体化发展[J]. 长江流域资源与环境, , (): 0 .
[10] 田 鹏, 李加林, 史小丽, 王丽佳, 刘瑞清. 浙江省土地利用格局时空变化及生态风险评价[J]. 长江流域资源与环境, 2018, 27(12): 2697 -2706 .