长江流域资源与环境 >> 2024, Vol. 33 >> Issue (2): 242-253.doi: 10.11870/cjlyzyyhj202402002

• 区域可持续发展 • 上一篇    下一篇

长三角城市群CO2排放时空格局和影响因素

朱振东1,齐璇璇1,贾一越1,黄蕊1,2*   

  1. (1. 南京师范大学虚拟地理环境教育部重点实验室,江苏 南京 210023;2. 江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023)
  • 出版日期:2024-02-20 发布日期:2024-03-06

Analysis of Spatial-temporal Pattern and Influencing Factors of CO2 Emissions in the Yangtze River Delta Urban Agglomeration

ZHU Zhen-dong1, QI Xuan-xuan1, JIA Yi-yue1, HUANG Rui1,2   

  1. (1.Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing 210023,China; 2. Jiangsu Provincial Collaborative Innovation Center for Geographic Information Resource Development and Utilization, Nanjing 210023,China)
  • Online:2024-02-20 Published:2024-03-06

摘要: 长三角城市群低碳转型对推动其他地区高质量发展具有重要引领作用。基于夜间灯光数据构建CO2排放反演模型,利用趋势分析、空间自相关分析和地理加权回归模型探究2000~2019年长三角城市群县域CO2排放的时空变化和影响因素。结果表明:长三角城市群CO2排放较高的县域分布在上海、苏州等大城市的中心区域,低排放县域主要分布在西南地区,但这些县域2011年之后呈现快速上升的态势。县级尺度CO2排放空间分布以高-高集聚和低-低集聚为主,低-低集聚区域不断减少。人口总量、人均GDP和使用外资总额对长三角城市群CO2排放的影响均为正效应。其中,人口总量对CO2排放影响程度最大。研究结果可为长三角城市群精准实施减排措施和更高质量一体化发展提供科学支撑。

Abstract: The low-carbon transformation of the Yangtze River Delta urban agglomeration plays an important leading role in promoting high-quality development in other regions. This paper built a CO2 emission inversion model based on nighttime lighting data, and used trend analysis, spatial autocorrelation analysis, and geographic weighted regression models to explore the temporal and spatial changes and the influencing factors of CO2 emissions in counties of the Yangtze River Delta urban agglomeration from 2000 to 2019. The results showed that the counties with high CO2 emissions were located in the central regions of major cities such as Shanghai and Suzhou, while the counties with low CO2 emissions were mainly located in the southwest region. However, these counties showed a rapid upward trend since 2011. The spatial distribution of CO2 emissions at the county level was dominated by high-high concentration and low-low concentration, with low-low concentration areas were in a trend of a continuous decreasing. The impacts of total population, per capita GDP, and total foreign capital use on CO2 emissions was positive. The total population had the greatest impact on CO2 emissions. The results of this paper provided scientific support for the precise implementation of emission reduction measures and higher quality integrated development of the Yangtze River Delta urban agglomeration.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 滕家喜, 周志翔, 李晨, 胡兴宜, 孙启祥. 石首市抑螺防病林空间布局优化研究[J]. 长江流域资源与环境, 2018, 27(07): 1430 .
[2] 王锐, 余涛, 杨忠芳, 侯青叶, 曾庆良, 马宏宏. 富硒土壤硒生物有效性及影响因素研究[J]. 长江流域资源与环境, 2018, 27(07): 1460 .
[3] 付书科, 李小帆, 彭甲超, 张子悦, 陈 思. 基于动态因子分析法的长江三角洲城市群城镇化质量测度研究[J]. 长江流域资源与环境, 2018, 27(09): 1909 -1918 .
[4] 刘菊 傅斌 张成虎 胡治鹏 王玉宽. 基于InVEST模型的岷江上游生态系统水源涵养量与价值评估[J]. 长江流域资源与环境, , (): 0 .
[5] 张玉韩 吴尚昆 董延涛. 长江经济带矿产资源开发空间格局优化研究[J]. 长江流域资源与环境, , (): 0 .
[6] 李 娟, 董 平, 陆玉麒, 王 毅, 郭 政.  

中原经济区人口与经济空间格局演变研究 [J]. 长江流域资源与环境, 2018, 27(10): 2222 -2231 .

[7] 李 述, 葛 刚, 刘琪璟.  

基于主体功能区规划的江西省城镇化协调发展研究 [J]. 长江流域资源与环境, 2018, 27(10): 2250 -2259 .

[8] 周晟吕, 李月寒, 胡 静, 封竞男. 基于问卷调查的上海市大气环境质量改善的支付意愿研究[J]. 长江流域资源与环境, 2018, 27(11): 2419 -2424 .
[9] 孔锋, 杨萍, 王品, 吕丽莉, 孙劭. 中国灾害性对流天气日数的时空变化特征[J]. 长江流域资源与环境, 2018, 27(11): 2518 -2528 .
[10] 查凯丽, 刘艳芳, 孔雪松, 田雅丝, 刘耀林, . 村镇路网通达性与空间出行研究——以武汉市李集镇为例[J]. 长江流域资源与环境, 2018, 27(12): 2663 -2672 .