长江流域资源与环境 >> 2024, Vol. 33 >> Issue (4): 844-854.doi: 10.11870/cjlyzyyhj202404014

• 生态环境 • 上一篇    下一篇

太湖水体微囊藻毒素长期(1999—2021)变化特征及健康风险评估

周贝贝1,谢立莹2*,薛庆举3,苏小妹4   

  1. (1. 江苏开放大学环境生态学院, 江苏 南京 210017; 2. 辽宁省兴城市环境保护监测站, 辽宁 兴城 125100; 3. 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 江苏 南京 210008; 4. 江苏省环境科学研究院,江苏省环境工程重点实验室, 江苏 南京 210036)
  • 出版日期:2024-04-20 发布日期:2024-04-28

Long-term (1999-2021) Variations and Health Risk Assessment of Microcystins in Lake Taihu

ZHOU Bei-bei1, XIE Li-ying2, XUE Qing-ju3 , SU Xiao-mei4    

  1. (1. College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China; 2. Environmental Protection Monitoring Station of Xingcheng City, Xingcheng 125100 China; 3. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 4. Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Sciences, Nanjing 210036, China)
  • Online:2024-04-20 Published:2024-04-28

摘要: 基于1999~2021年期间太湖微囊藻毒素(MCs)已发表文献和近期自测数据,利用Mann-Kendall趋势检验以及风险熵指数等方法,系统分析了太湖近20年以来MCs的长期变化特征与健康风险,以期为进一步加强MCs的监测和风险评估提供支撑。结果显示,自1999年以来,太湖全湖总MC(TMC)、胞内MC(TIMC)以及胞外溶解性MC(TEMC)浓度整体均呈缓慢增加趋势,其中TMC与TEMC月平均浓度的变化范围分别为0.01~19.50 μg/L和0.001~6.44 μg/L。从季节的历年变化看,春季时3种MC浓度均逐年上升,夏秋两季仅在近几年呈明显上升趋势,而冬季时仅TEMC表现为逐年升高趋势。在不同湖区,TMC与TIMC浓度趋于逐年升高,特别是在湖心及南部湖区和东太湖等水域,近几年升高趋势明显;TEMC浓度仅在贡湖湾逐年升高,但其历年平均浓度在竺山湾最高(0.53 μg/L),而在夏秋季节时,以梅梁湾内为最高。健康风险评估结果显示,太湖共出现3个TEMC暴露风险高峰期,其中以2013~2015年期间风险值最高;从不同湖区看,竺山湾MCs暴露风险最高,其次为梅梁湾。以上研究结果可为浅水湖泊有害蓝藻水华的健康风险评估及防治提供科学依据。

Abstract: Based on the published and recent measurement of microcystins (MCs) in Lake Taihu from 1999 to 2021, the long-term variation and health risks of MCs were analyzed by Mann-Kendall trend test and hazard quotient index to provide support for further strengthening of MCs monitoring and risk assessment. The results showed that the total MC (TMC), intracellular MC (TIMC) and extracellular soluble MC (TEMC) concentrations have been increasing slowly since 1999, and the monthly mean concentrations of TMC and TEMC ranged from 0.01-19.50 μg/L and 0.001-6.44 μg/L, respectively. For seasonal variation, the three kinds of MC in spring showed an upward trend year by year, while summer and autumnTEMC showed an upward trend in winter. In different lake areas, TMC and TIMC also showed an increasing trend, especially in the central and southern lake area, and the Eastern Lake. The TEMC concentration increased in Gonghu Bay, and the average annual TEMC concentration was the highest in Zhushan Bay (0.53 μg/L), the TEMC concentration was the highest in Meiliang Bay in summer and autumn. Health risk assessment showed that there were three TEMC exposure risk peaks in Lake Taihu, and the risk value was the highest during 2013-2015. The risk value of TEMC in Zhushan Bay was the highest, followed by Meiliang Bay. This study can provide the scientific basis for health risk assessment and control of harmful cyanobacterial blooms in shallow lakes.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 蓝希, 刘小琼, 郭炎, 陈昆仑. “长江经济带”战略背景下武汉城市水环境承载力综合评价[J]. 长江流域资源与环境, 2018, 27(07): 1345 .
[2] 刘钢, 刘坤琳, 汪玮茜, 赵爽. 水质感知视角下水库移民满意度分析——基于有序逻辑回归的实证研究[J]. 长江流域资源与环境, 2018, 27(07): 1355 .
[3] 佘颖, 刘耀彬. 国内外绿色发展制度演化的历史脉络及启示[J]. 长江流域资源与环境, 2018, 27(07): 1370 .
[4] 杨涵洧, 马悦, 史军. 全球变暖背景下长江三角洲夏季高温时空演变研究[J]. 长江流域资源与环境, 2018, 27(07): 1400 .
[5] 吴健, 黄沈发, 肖绍赜, 吴建强, 唐浩, 沙晨燕, 王敏. 基于碳稳定同位素的滨岸草地生态系统土壤有机碳贡献研究[J]. 长江流域资源与环境, 2018, 27(07): 1425 .
[6] 袁博, 郭梦京, 周孝德, 郑兴. 气候变化及人类活动对河流溶解性有机质(DOM)影响的研究进展[J]. 长江流域资源与环境, 2018, 27(07): 1440 .
[7] 闫东升, 杨槿, 陈雯. 失地农民生活满意度测度及影响因素研究——以南京市仙林新村为例[J]. 长江流域资源与环境, 2018, 27(07): 1450 .
[8] 李 咪, 芮 旸, 王成新, 姬 宇, 李雅楠. 传统村落的空间分布及影响因素研究——以吴越文化区为例[J]. 长江流域资源与环境, 2018, 27(08): 1693 .
[9] 曾忠平, 邹尚君, 彭浩轩. 基于重力空间熵的城市湿地压力模型构建研究——以武汉南湖湿地为例[J]. 长江流域资源与环境, 2018, 27(08): 1745 .
[10] 孙冬营, 佘靖雯, 刘凌燕, 王慧敏. 长江三角洲城市群工业用水效率评价及时空差异研究[J]. 长江流域资源与环境, 2018, 27(09): 1901 -1908 .