长江流域资源与环境 >> 2018, Vol. 27 >> Issue (07): 1400-.doi: 10.11870/cjlyzyyhj201807014

• 自然资源 • 上一篇    下一篇

全球变暖背景下长江三角洲夏季高温时空演变研究

杨涵洧,马悦,史军   

  1. (上海市气候中心中国气象局上海城市气候变化应对重点开放实验室, 上海 200030)
  • 出版日期:2018-07-20 发布日期:2018-11-09

Spatial and Temporal Characteristics of Summertime High Temperature in Yangtze River Delta under the Background of Global Warming

YANG Hanwei, MA Yue, SHI Jun   

  1. (Shanghai Climate Center/Key Laboraty of Cities Mitigtion and Adaptation to Clincate Change in Shanghai, Shanghai 200030, China)
  • Online:2018-07-20 Published:2018-11-09

摘要: 基于国家气候中心提供的2000站逐日地面气温资料,运用高温日数、平均高温度数以及日最高气温这3个指标刻画1961~2015年长江三角洲(简称长三角)地区的夏季高温时空演变,并在对上述指标进行突变检测的基础上,比较其转折前后的夏季高温空间分布特征。结果表明:(1)长三角夏季高温指标在2000年左右存在气候突变,2000年以后夏季高温日数和强度出现显著上升;(2)较之2000年前,2000年后的高温度日数的分布型更为集中,前三个EOF模态解释方差均有所上升,EOF1分布较为相似,EOF2不再呈现带状分布,EOF3局地性特征减弱;(3)2000年后的长三角夏季高温日数增长明显,年平均高温日数达到20 d以上的区域向北扩展至32°N附近,向东扩展至往浙江东部沿海;年平均高温日数达到30 d以上的区域更扩展至31°N以南、121°E以西所有地区,高温日数最多可达近50 d;(4)2000年后高温度日数呈明显增加,从2000年前的10~20℃·d增加到20~50℃·d,以30~31°N一带增长最为显著。浙江中部和南部地区在2000年后高温日数增长明显,但高温强度增长较弱;安徽东部、浙江北部和上海地区高温日数和强度均增长明显。

Abstract: Based on the daily surface temperature data from National Climate Center of China, three summertime high temperature (SHT) indices: SHT days, SHT intensity and daily maximum temperature are defined to depict the summertime high temperature (SHT) in Yangtze River Delta (YRD) from different perspectives. On this basis, the mutations of the SHT and the before and after comparison of the spatial and temporal characteristics of SHT are detected over the period 1961-2015. The result shows that there exits an abrupt mutation in SHT around 2000. As compared to the SHT before 2000, more SHT days and higher SHT intensity are found after 2000. The analysis of Empirical Orthogonal Function (EOF) shows that the explained variances of the first three modes have an increase, indicating a more concentrate SHT distribution. Compared with the first three modes before 2000, a similar distribution of EOF1, a nonzonal distribution for EOF2 and a weaklocality distribution for EOF3 are found after 2000. The areas with SHT are enlarged after 2000. The areas with SHT exceeding 20 days have a northward expansion to around 32°N and an eastward expansion to the coast of Zhejiang province. Moreover, the areas with SHT exceeding 30 days cover the whole region to the south of 32°N and west of 121°E, and the maximum SHT days is up to almost 50 days. The SHT days have an apparent increase from 10~20℃·d before 2000 to 20~50℃·d after 2000, which is most significant around 30~31°N. After 2000, it has an evident increase for SHT days and comparatively weak increase for SHT intensity in middle and south of Zhejiang province, and both evident increase for SHT days and intensity in east Anhui, north Zhejiang, and Shanghai. 

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄俊雄; 徐宗学. 太湖流域1954~2006年气候变化及其演变趋势[J]. 长江流域资源与环境, 2009, 18(1): 33 .
[2] 沈德福,史学正,吕成文,于东升. 江苏沿江地区土壤肥力空间分布及其区域对比研究[J]. 长江流域资源与环境, 2005, 14(3): 316 -321 .
[3] 聂钠, 于坤香. 我国世界自然遗产地旅游业环境经济核算思路[J]. 长江流域资源与环境, 2009, 18(2): 121 .
[4] 李燕玲, 刘爱民. 长江流域冬季农业主要作物的耕地竞争机制及案例研究[J]. 长江流域资源与环境, 2009, 18(2): 146 .
[5] 李崇明,黄真理,张晟,常剑波. 三峡水库藻类“水华”预测[J]. 长江流域资源与环境, 2007, 16(1): 1 -6 .
[6] 宋玉芝,秦伯强, 高光. 附着生物对富营养化水体氮磷的去除效果[J]. 长江流域资源与环境, 2009, 18(2): 180 .
[7] 许峰, 祁士华, 高媛, 邢新丽. 绵阳市代表性点位土壤多环芳烃剖面分布特征[J]. 长江流域资源与环境, 2009, 18(2): 192 .
[8] 张榆霞,刘嘉麒,王立前. 漫湾电站建成后澜沧江下游水质变化[J]. 长江流域资源与环境, 2005, 14(4): 501 -506 .
[9] 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125 -131 .
[10] 刘丙军,邵东国,阳书敏,曹卫锋. 基于灰关联熵的汉江中下游地区水资源分配模型和方法研究[J]. 长江流域资源与环境, 2005, 14(6): 699 -703 .