长江流域资源与环境 >> 2024, Vol. 33 >> Issue (4): 855-869.doi: 10.11870/cjlyzyyhj202404015

• 生态环境 • 上一篇    下一篇

eDNA监测空间分辨率量化方法研究 ——以长江中游干流平水期为案例

杨海乐,许兰馨,周琼,刘志刚,吴金明*   

  1. (中国水产科学研究院长江水产研究所,农业农村部淡水生物多样性保护重点实验室,湖北 武汉 430223)
  • 出版日期:2024-04-20 发布日期:2024-04-28

Identifying the Method of Quantifying the Spatial Resolution of eDNA Monitoring: A Case Study in Middle Yangtze River in Mean-flow Period

YANG Hai-le, XU Lan-xin, ZHOU Qiong, LIU Zhi-gang, WU Jin-ming   

  1. (Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R.China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China)
  • Online:2024-04-20 Published:2024-04-28

摘要: eDNA监测技术有助于提高水生生物种类组成监测和种群健康监测的效率,而eDNA监测的空间分辨率未量化阻碍了常态化系统化eDNA监测的实施。为了量化eDNA监测的空间分辨率,探索建立了一个基于流域生物信息流分析框架和eDNA监测空间分辨率概率化表述的量化方法,并在长江中游开展了案例研究。2020年6月(平水期)在长江中游设置30个采样断面,断面间隔在30 km左右,开展eDNA采样,进行高通量测序(原核生物用16S rRNA基因扩增子测序、真核生物用线粒体COI基因扩增子测序),根据流域生物信息流分析框架计算eDNA所能监测到的生物信息输移的量化特征,确定eDNA监测空间分辨率(系列)值及其可信度、覆盖度。结果显示长江中游平水期,eDNA监测原核生物达到90%以上覆盖度对应的空间分辨率为27 km(可信度为84.18%),监测真核生物达到90%以上覆盖度对应的空间分辨率为6 km(可信度为41.38%),达到80%以上覆盖度对应的空间分辨率为13 km(可信度为50.64%);监测原核生物达到90%以上可信度对应的空间分辨率为58 km(覆盖度为82.30%),监测真核生物达到90%以上可信度对应的空间分辨率为78 km(覆盖度为38.61%),达到80%以上可信度对应的空间分辨率为50 km(覆盖度为49.70%)。研究结果可为其它eDNA监测空间分辨率估算工作提供方法借鉴,为长江中游eDNA监测断面设置提供量化参考。

Abstract: Normalized and systemic eDNA (environmental DNA) monitoring is very helpful for aquatic biodiversity monitoring, assessment and conservation. The lack of quantified spatial resolution of eDNA monitoring hinders the implement of normalized and systemic eDNA monitoring. To quantify the spatial resolution of eDNA monitoring, we explored a quantification method based on black-box model, simplified ecological processes and the statistical representation of spatial resolution. e took a case study of quantifying the spatial resolution of eDNA monitoring in the middle reach of Yangtze River. Th30 sampling transections with an approximate 30 km  ccording to eDNA sampling in mean-flow period, next generation sequencing and watershed biological information flow (WBIF) analyzing, the characteristics of eDNA monitoring spatial resolution. Here, two taxa (eukaryotes and prokaryotes, respectively indicated by mitochondrial COI gene and 16S rRNA gene) were identified and analyzed. Results showed that , the prokaryotic WBIF transport capacity was 99.91%/km, the WBIF labeling nonliving prokaryotic materials accounted for 23.83% of the total prokaryotic WBIF and had a half-life distance of 48.45 km; the eukaryotic WBIF transport capacity was 99.85%/km, the WBIF labeling nonliving eukaryotic materials accounted for 67.93% of the total eukaryotic WBIF and had a half-life distance of 30.00 km. There was tradeoff between the reliability and coverage of eDNA monitoring spatial resolution. The reliability and coverage of prokaryotic eDNA monitoring spatial resolution got their balance point at 39 km with the value approximate 86%. The reliability and coverage of eukaryotic eDNA monitoring spatial resolution got their balance point at 28 km with the value approximate 65%. To adapt different monitoring aims, one could select different eDNA monitoring spatial resolutions based on a suitable reliability or coverage. To identify the species composition of a unit reach, one should give priority to the coverage of eDNA monitoring spatial resolution. 90% prokaryotic coverage need a spatial resolution of 27 km (reliability, 84.18%); 90% eukaryotic coverage need a spatial resolution of 6 km (reliability, 41.38%); 80% eukaryotic coverage need a spatial resolution of 13 km (reliability, 50.64%). To identify the species spatial heterogeneity of a set of adjacent reaches, one should give priority to the reliability of eDNA monitoring spatial resolution. 90% prokaryotic reliability need a spatial resolution of 58 km (coverage, 82.30%); 90% eukaryotic reliability need a spatial resolution of 78 km (coverage, 38V61%); 80% eukaryotic reliability need a spatial resolution of 50 km (coverage, 49.70%). As a pilot study of eDNA monitoring spatial resolution in middle Yangtze River, thresults were not accuracy enough, because of the spatial and temporal heterogeneous WBIF along the river, and the systemic errors of random sample. Thwork could provide a quantitative reference for the eDNA monitoring sampling setting in the middle reach of Yangtze River and a methodology reference for the eDNA monitoring spatial resolution estimating in other free flowing rivers and reaches.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵家虎| 高俊峰| 刘聚涛| 许妍. 应用MODIS监测太湖蓝藻水华时空分布特征[J]. 长江流域资源与环境, 2011, 20(12): 1475 .
[2] 蓝希, 刘小琼, 郭炎, 陈昆仑. “长江经济带”战略背景下武汉城市水环境承载力综合评价[J]. 长江流域资源与环境, 2018, 27(07): 1345 .
[3] 熊美华, 邵科, 赵修江, 朱滨, 史方. 长江中上游圆口铜鱼群体遗传结构研究[J]. 长江流域资源与环境, 2018, 27(07): 1395 .
[4] 孔锋, 孙劭, 王一飞, 吕丽莉. 近56 a来中国东部地区雨涝事件时空演变特征[J]. 长江流域资源与环境, 2018, 27(07): 1405 .
[5] 滕家喜, 周志翔, 李晨, 胡兴宜, 孙启祥. 石首市抑螺防病林空间布局优化研究[J]. 长江流域资源与环境, 2018, 27(07): 1430 .
[6] 符静, 秦建新, 黎祖贤, 张中波, 胡顺石. 变化中的参考作物蒸散量及其对气候的响应[J]. 长江流域资源与环境, 2018, 27(07): 1445 .
[7] 闫东升, 杨槿, 陈雯. 失地农民生活满意度测度及影响因素研究——以南京市仙林新村为例[J]. 长江流域资源与环境, 2018, 27(07): 1450 .
[8] 李建豹, 黄贤金, 孟 浩, 周 艳, 徐国良, 吴常艳. “十二五”时期中国碳排放强度累积目标完成率分析[J]. 长江流域资源与环境, 2018, 27(08): 1655 .
[9] 李 璐, 董 捷, 张俊峰. 长江经济带城市土地利用效率地区差异及形成机理[J]. 长江流域资源与环境, 2018, 27(08): 1666 .
[10] 李 咪, 芮 旸, 王成新, 姬 宇, 李雅楠. 传统村落的空间分布及影响因素研究——以吴越文化区为例[J]. 长江流域资源与环境, 2018, 27(08): 1693 .