长江流域资源与环境 >> 2012, Vol. 21 >> Issue (03): 283-.

• 区域可持续发展 • 上一篇    下一篇

基于控制单元的水环境容量核算研究——以锦江流域为例

王涛|张萌|张柱|陈宏文|钱万友   

  1. (1.江西省环境保护科学研究院| 江西 南昌 330029; 2.南昌大学环境与化学工程学院| 江西 南昌 330031)
  • 出版日期:2012-03-20

CALCULATION OF WATER ENVIRONMENTAL CAPACITY BASED ON CONTROL UNIT—&mdash|A CASE STUDY OF THE JINJIANG RIVER BASIN

WANG Tao1, ZHANG Meng1, ZHANG Zhu1,2, CHEN Hongwen1, QIAN Wanyou1,2   

  1. (1.Jiangxi Academy of Environmental Science, Nanchang 330029, China|2.School of Environment &|Chemical Engineering,Nanchang University, Nanchang 330031, China
  • Online:2012-03-20

摘要:

水环境容量核算是流域水环境容量总量分配的重要依据,关系到流域水质目标的实现。控制单元作为流域水环境管理的一个基本实施单位,以其为基础开展水环境容量核算,对于科学制定控制单元容量总量分配具有重要意义。以江西省锦江流域为例,根据水环境容量核算的基本原理,结合锦江流域的污染状况、水质现状和水环境功能区划,对流域各控制单元COD和氨氮的水环境容量进行分析,结果表明,控制单元的水环境容量与其内排污口的分布及功能区水质目标密切相关,COD的水环境容量以高安控制单元的最大,为 21 811 t/a;其次为上宜控制单元,为 21 168 t/a;再次为新丰控制单元,为 14 493 t/a;万载控制单元的最小,为 7 607 t/a。氨氮的水环境容量在各控制单元的分布特征与COD的略有不同,以上宜控制单元的最大,为790 t/a;其次为高安控制单元,为664 t/a;再次为新丰控制单元,为462 t/a;万载控制单元的最小,为303 t/a

Abstract:

Calculation of water environmental capacity is an important basis in distribution of water environmental capacity,relating to the reachability of water quality target in river basin.It is very important for making distribution plan of water environmental capacity to calculate water environmental capacity based on control units,which are the basic implementation units in water environmental management of river basin.As a case study of the Jinjiang River basin,Jiangxi province,the water environmental capacities of COD and NH+4N were both calculated in each control unit according to the calculation methods of water environmental capacity,pollution situation, water quality status and water environmental function division in the river basin.Results showed that water environmental capacities of control unit was closely related to the distribution of drain outlet and water quality target in the function area; the capacity of COD in Gaoan control unit was the largest 21 811 t/a,followed by Shangyin control unit 21 168 t/a,Xinfeng control unit 14 493 t/a and Wanzai control unit  7 607 t/a.The distribution characteristics of NH+4N capacity in each control unit were slightly different from that of COD capacity,and Shangyi control unit had the largest capacity 790 t/a,followed by Gaoan control unit 664 t/a,Xinfeng control unit 462 t/a and Wanzai control unit 303 t/a

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡学玉, 孙宏发, 陈德林. 铜绿山矿冶废弃地优势植物重金属的积累与迁移[J]. 长江流域资源与环境, 2008, 17(3): 436 .
[2] 宋述军,周万村. 岷江流域土地利用结构对地表水水质的影响[J]. 长江流域资源与环境, 2008, 17(5): 712 .
[3] 吕东亮. 汉江水质优于长江的原因刍议[J]. 长江流域资源与环境, 2006, 15(Sup1): 102 -104 .
[4] 彭刚华,黄良英. 长江水质评价和预测模型探讨[J]. 长江流域资源与环境, 2006, 15(Sup1): 77 -82 .
[5] 王学雷,蔡述明,任宪友,陈世俭. 三峡库区湿地生态建设与保护利用[J]. 长江流域资源与环境, 2004, 13(2): 149 -153 .
[6] 张 雷,吴映梅. 长江干流地区区域发展与国家工业化[J]. 长江流域资源与环境, 2005, 14(5): 633 -637 .
[7] 尹占娥,许世远. 上海浦东新区土地利用变化及其生态环境效应[J]. 长江流域资源与环境, 2007, 16(4): 430 .
[8] 魏 伟,周 婕,许 峰. 大城市边缘区土地利用时空格局模拟——以武汉市洪山区为例[J]. 长江流域资源与环境, 2006, 15(2): 174 -179 .
[9] 段七零. 我国原油流动的空间格局研究[J]. 长江流域资源与环境, 2008, 17(4): 573 .
[10] 李友辉,董增川,孔琼菊. 廖坊水利工程对抚河流域生态承载力的影响分析[J]. 长江流域资源与环境, 2008, 17(1): 148 .