长江流域资源与环境 >> 2013, Vol. 22 >> Issue (06): 735-.

• 自然资源 • 上一篇    下一篇

基于GGE双标图和纤维长度选择的长江流域棉花区域试验环境评价

许乃银 || 张国伟 | 李 健 | 周治国   

  1. (1.江苏省农业科学院经济作物研究所/农业部长江下游棉花和油菜重点实验室| 江苏 南京 210014;2.南京农业大学/农业部作物生长调控重点开放实验室|江苏 南京 210095
  • 出版日期:2013-06-20

EVALUATION OF COTTON REGIONAL TRIAL ENVIRONMENTS BASED ON GGE BIPLOT AND FIBER LENGTH SELECTION

XU Naiyin1, ZHANG Guowei1, LI Jian1, ZHOU Zhiguo2   

  1. (1.Institute of Industrial Crops,Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed,Ministry of Agriculture,Nanjing 210014,China; |2.Key Laboratory of Crop Growth Regulation,Ministry of Agriculture/Nanjing Agricultural University,Nanjing 210095,China 
  • Online:2013-06-20

摘要:

采用GGE双标图方法对2000~2010年期间27个独立的长江流域棉花品种区域试验的安庆、南阳、黄冈、荆州、武汉、襄阳、常德、岳阳、南京、南通、盐城、九江、简阳、射洪和慈溪等15个试验环境(试验点)在棉纤维长度选择上的鉴别力、代表性、理想指数和离优度指数进行了全面分析和综合评价。对各试验环境基于纤维长度选择的综合评价表明,荆州、九江、安庆和常德是最理想的试验环境,对以长江流域为目标环境的广适性新品种选育和作为区域试验环境鉴别理想新品种的效率最高,而江苏和浙江省沿海棉区的试验环境(南通、盐城和慈溪)和四川盆地棉区试验环境(简阳和射洪)不适宜作为针对长江流域的纤维长度选择与推荐环境,从而展示了GGE双标图在棉花区域试验环境评价方面的应用效果,也为长江流域国家棉花区域试验方案的决策提供理论依据

Abstract:

The existence of extensive crossover genotype by environment interactions (GEI) clearly suggests that the efforts are necessary to identify the discriminating and representative test locations over multilocation data for specific trait selection and new cultivar evaluation.Genotype+Genotype×Environment interaction (GGE) biplot analysis is an efficient technique in graphically displaying and visualizing the interrelationship between the actual locations and the virtual ideal location.In the “discrimination and representativeness view” of GGE biplot,the vector length of a test location stands for its discriminating ability in differentiating the genetic differences among candidate genotypes.The angle between a test location vector and the average environment coordinate (AEC) is defined as its representativeness to the average performance in the target planting region.Further,in the latest version of heritabilityadjusted GGE biplot,the test location vector length and the cosine value of the angle to the AEC are approximated by the genetic correlation(r〖KF(〗H〖KF)〗) and the square root heritability (〖KF(〗H〖KF)〗) respectively.Meanwhile,the product of the genetic correlation(r〖KF(〗H〖KF)〗) and the square root heritability(〖KF(〗H〖KF)〗) is defined as the ideal index of test location.However,the Euclidean distance to the “ideal” location is more precise in evaluating the ideal degree of test locations.In the present study,the heritabilityadjusted GGE biplot analysis was employed to analyze twentyseven independent oneyear datasets of national cotton variety trials from 2000 to 2010 in the Yangtze River Valley to evaluate trial locations based on cotton fiber length selection.The trial locations were comprised of Janyang and Shehong in Sichuan province; Changde and Yueyang in Hunan province; Huanggang,Jingzhou,Wuhan and Xiangfan in Hubei province; Nanyang in Henan province; Jiujiang in Jiangxi province; Anqin in Anhui province; Nanjing,Nantong and Yancheng in Jiangsu province and Cixi in Zhejiang province.Judging by the desirability indices and superiority parameter,we could conclude that Jingzhou,Jiujiang and Changde test locations were most efficient in broad adaptive breeding for cotton fiber length selection and also ideal to act as regional trial sites for the enhancement of cultivar selection efficacy.However,the coastal region test location in Jiangsu and Zhejiang province (Nantong,Yancheng and Cixi) and the test locations located in Sichuan basin(Jianyang and Shehong) were not suitable in cotton fiber length selection targeting at the whole cotton planting region in the Yangtze River Valley.The other trial locations including Yueyang,Huanggang,Wuhan,Xiangfan,Nanyang,Anqin and Nanjing were of moderate performance in the regional trial scheme for cotton fiber length selection.The results above were positive as a case study in displaying the GGE biplot application efficiency in cotton regional trial environment evaluation and also in providing the theory background for the decisionmaking of national cotton scheme configuration in the Yangtze River Valley.〖

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 杨 选. 国内外典型水治理模式及对武汉水治理的借鉴[J]. 长江流域资源与环境, 2007, 16(5): 584 .
[3] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[4] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[5] 李恒鹏,杨桂山,刘晓玫,万荣荣. 流域土地利用变化的长周期水文效应及管理策略[J]. 长江流域资源与环境, 2005, 14(4): 450 -455 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 廖顺宝,李泽辉. 四川省人口分布与土地利用的关系及人口数据空间化试验[J]. 长江流域资源与环境, 2004, 13(6): 557 -561 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .