长江流域资源与环境 >> 2013, Vol. 22 >> Issue (12): 1572-.

• 生态环境 • 上一篇    下一篇

基于GIS和USLE的小流域土壤侵蚀定量评价

朱明勇, 谭淑端, 张全发   

  1. (1.闽南师范大学历史与社会学系,福建 漳州 363000|2.闽南师范大学粒计算重点实验室|福建 漳州 363000|3.湖南农业大学生物科学技术学院,湖南 长沙 410128|4.中国科学院武汉植物园水生植物与流域生态重点实验室,湖北 武汉 430074
  • 出版日期:2013-12-20

ASSESSMENT OF SOIL EROSION BASED ON GIS AND USLE IN A SMALL AGRICULTURAL WATERSHED,CHINA

  1. (1.Department of History and Sociology,Minnan Normal University,Zhangzhou 363000,China|2.Laboratory of Granular Computing,Minnan Normal University,Zhangzhou 363000,China|3.College of Bioscience &|Biotechnology,Hunan Agricultural University,Changsha 410128,China|4.Key Laboratory of Aquatic Botany and Watershed Ecology,Wuhan Botanical Garden,Chinese Academy of Sciences,Wuhan 430074,China
  • Online:2013-12-20

摘要:

通过气象数据分析、实地调查、野外采样及室内分析、DEM计算、遥感解译等,建立了南水北调中线水源地丹江口水库区典型小流域地理数据库,确定了计算USLE因子指标的方法。在ArcGIS支持下,模拟了小流域土壤侵蚀强度的空间分布。将模拟结果分为微度、低度、中度、强度、剧烈侵蚀5级,建立土壤侵蚀与土地利用/土地覆盖类型及坡度之间的关系。结果表明:研究区年均土壤侵蚀量2414 t/hm2,远超该地区容许土壤流失量5 t/(hm2·a)。96%的侵蚀区及95%的土壤侵蚀总量位于<25°区域。就土地利用/土地覆盖类型而言,陡坡耕作区是主要的土壤流失区。研究结果为水源区的土壤侵蚀治理提供参考意见,同时为USLE在无土壤类型图地区的应用提供一种方法借鉴

Abstract:

Soil erosion is one of the major environment problems in the Danjiangkou Reservoir Region (DRR) of China, the water source area of the SouthtoNorth Water Transfer Project (Middle Route). Soil erosion evaluation is urgently needed in this area, but it is difficult to assess because soil erosion patterns in watersheds are heterogeneous. The problem can be overcome by using soil erosion models. In this paper, soil erosion assessment was carried out in a typical watershed, the Wulongchi watershed in the DRR. The Universal Soil Loss Equation (USLE) was used to predict the spatial distribution of the average annual soil erosion modulus. There were five parameters in the USLE (i.e., R, K, LS, C, P), and the ArcGIS provided spatial input parameters using local data. The Yu Model and the daily rainfall data of the meteorological stations were used to derive the R parameter values. Through sampling in the field, analysis in the laboratory, model simulation and spatial interpolation, we got the K factor value needed in the USLE. The raster grid cumulation and maximum downhill slope methods were adopted to get the topographic (LS) factor values. The land use/land cover data derived from remote sensing images were used to get the C factor values. Combined with field survey and slope data, we determined the P factor value. Integrated with USLE and GIS, we simulated soil erosion modulus in the Wulongchi watershed. The modeling result was classified into five categories ranging from minimal risk to extreme erosion risk. The soil erosion map was linked to land use/land cover (LULC) and slope maps to display the relationship between soil erosion and environmental factors. The results showed that the mean R, K, LS, C, P values were 3 33785(MJ〖DK〗·mm)/(hm2〖DK〗·h〖DK〗·yr), 0030 4(t〖DK〗·hm2〖DK〗·h)/(hm2〖DK〗·MJ〖DK〗·mm), 1696, 0282 and 0675. Annual soil loss was 2414 t/(hm2〖DK〗·yr) in the study area, far above the soil loss tolerance 5 t/(hm2〖DK〗·yr). Most areas of the watershed (5527%) fell within the minimal erosion category (<5 t/(hm2〖DK〗·yr)). About 96% of the erosion area and nearly 95% of the total soil loss occurred in the zone with slope less than 25°. As far as LULC concerned, slope cultivated land was the main source of soil loss in this area. Field survey evidenced the effectiveness of this method. The results of the study provide useful information for the land managers in prioritizing the areas of erosion mitigation in the entire reservoir region.Study results also indicate that USLEGIS methodology is an efficient tool for assessing and mapping soil erosion risk at small watershed scale. The study also provides an idea on how to get the K factor value within the USLE when it has no soil map

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李崇明,黄真理. 三峡水库入库污染负荷研究(Ⅱ)——蓄水后污染负荷预测[J]. 长江流域资源与环境, 2006, 15(1): 97 -106 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 李 佳,李思悦,谭 香,张全发. 南水北调中线工程总干渠沿线经过河流水质评价[J]. 长江流域资源与环境, 2008, 17(5): 693 .
[4] 梅 艳, 刘友兆, 梁流涛. 基于相对承载力的区域可持续发展研究——以江苏省为例[J]. 长江流域资源与环境, 2008, 17(3): 341 .
[5] 邹丽敏, 王 超, 冯士龙. 玄武湖沉积物中重金属污染的潜在生物毒性风险评价[J]. 长江流域资源与环境, 2008, 17(2): 280 .
[6] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[7] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[8] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[9] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[10] 陈 爽,王 进,. 太湖流域城市化水平及外来人口影响测评[J]. 长江流域资源与环境, 2004, 13(6): 524 -529 .