长江流域资源与环境 >> 2015, Vol. 24 >> Issue (08): 1279-1285.doi: 10.11870/cjlyzyyhj201508003

• 区域可持续发展 • 上一篇    下一篇

武汉城市群夏季热岛特征及演变

易予晴1,2, 龙腾飞1, 焦伟利1, 彭剑威3, 刘慧婵1, 凌赛广1,2   

  1. 1. 中国科学院遥感与数字地球研究所, 北京 100094;
    2. 中国科学院大学, 北京 100049;
    3. 武汉大学, 湖北 武汉 430072
  • 收稿日期:2014-09-18 修回日期:2014-10-10 出版日期:2015-08-20
  • 作者简介:易予晴(1991~),女,硕士研究生,主要研究方向为遥感图像处理.E-mail:yiyq@radi.ac.cn
  • 基金资助:
    全国生态环境十年变化(2000~2010年)遥感调查与评估专项(STSN-12-06);国家自然科学基金项目(61271013)资助

CHARACTERISTICS AND EVOLUTION OF THE SUMMER HEAT ISLAND EFFECT IN WUHAN CITY GROUP

YI Yu-qing1,2, LONG Teng-fei1, JIAO Wei-li1, PENG Jian-wei3, LIU Hui-chan1, LING Sai-guang1,2   

  1. 1. Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences, Beijing 100094, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Wuhan University, Wuhan 430072, China
  • Received:2014-09-18 Revised:2014-10-10 Online:2015-08-20

摘要: 利用2000~2010年共11期MODIS地表温度资料和多源多时相的遥感影像分类结果揭示武汉城市群的夏季热岛效应,反演并计算出10 a间武汉城市群日间和夜间的热岛强度变化、土地覆盖类型和城镇用地面积。在对不同时相的地表温度数据进行热岛指数归一化处理的基础上,分析了武汉城市群热岛的分布特征及年代演变,定量分析了武汉城市群以及中心城市武汉市不同热状况区面积的变化和热场的变迁。结果表明,武汉城市群夏季热岛效应较为明显,其中武汉市是主要热源和热中心;自2000年起,武汉城市群城乡温度差异逐步减小,热中心分布向外扩散,城市热岛区域急速扩张,整体热环境趋于恶化;新兴城区的开发增加了武汉市的热源分布,人工表面的增加以及自然表面的减少导致城市热岛效应不断加剧。

关键词: MODIS, 武汉, 城市群, 热岛效应, 城市化

Abstract: Wuhan City Group is a regional economy association which consists of the center city Wuhan, as well as eight other cities within 100 kilometers. It dominates half population and more than sixty percent of GDP of Hubei Province, in sharp contrast to its limited area occupying only one third of the province. Such a concentration and the consequent rapid development of urbanization have caused a lot of environmental problems such damages on the original natural environment, changes in the nature of underlying surfaces and irreversible changes in the structure, process and function of the ecosystem. These further bring about the urban heat island effect which deteriorates the city environment for recent years and needs an urgent solution. Our study attempts to obtain a comprehensive insight into the spatiotemporal pattern of this effect in this region and provide a basis for the solution. Our study is established on the year-by-year MODIS land surface temperature data from2000 through 2010. As the reference, the classification map produced from multi-source and multi-temporal remote sensing images is also available. In order to remove the annual variation of temperature, we defined the heat island intensity with a normalization processing on the original temperature. We used the frequency image of the top-rank intensity to measure the severity of the heat island effect. Different spatial distributions of the frequency are recognized in day and night time respectively, since the night-time result is partly disturbed by the water. But generally, the night-time heat island effect is more significant than that in day time. By averaging the day-night image to remove the disturbing factors, the highest frequency almost concentrates in highly developed urban areas such as Wuhan, revealing that the heat island effect firmly occurs in the build-up area and the severity is proportional to its size. The finding supports the conclusion that Wuhan becomes the main heat source of the whole city group.In the following analysis on the evolution of urban heat island, we find that pixels of top-rank intensity decrease while those of third-rank intensity increase over the 11 years, whether the day-time data or the night-time data is considered. It reveals a shrinking urban-rural temperature gap and a spreading tendency of the heat island effect, which coincide with the urbanization process of the city group. An essential conclusion is drawn that the overall thermal environment undoubtedly deteriorates. As the central city and the main heat source of the city group, Wuhan is specifically studied. According to the year-by-year histogram of the heat island intensity, the thermal condition of major regions gradually moves to the warmer end. In fact, the hyperthermic area has dramatically expanded since 2000. The result is consistent with the former analysis on the whole city group. As illustrated by the detailed distribution of hyperthermic areas from every year, the development of the newly-developing city zone has increased the distribution of heat source, while the increase of artificial surface and decrease of natural surface result in the aggravation of the urban heat island effect.

Key words: MODIS, Wuhan, city group, heat island effect, urbanization

中图分类号: 

  • X87
[1] HOWARD L. The Climate of London: Deduced from Meteorological Observations Made at Different Places in the Neighbourhood of the Metropolis. In Two Volumes[M]. Cambridge:Cambridge University Press, 2012.
[2] MANLEY G. On the frequency of snowfall in metropolitan England[J]. Quarterly Journal of the Royal Meteorological Society, 1958,84:70-72.
[3] RAO P K. Remote sensing of urban "heat islands" from an environmental satellite[J]. Bull Amer Meteor Soc, 1972,53(7):647-648.
[4] 张 穗,何报寅,杜 耘. 武汉市城区热岛效应的遥感研究[J]. 长江流域资源与环境,2003,12(5):445-449.
[5] 方圣辉,刘俊怡. 利用Landsat数据对武汉城市进行热岛效应分析[J]. 测绘信息与工程,2005,30(2):1-2.
[6] 梁益同,陈正洪,夏智宏. 基于RS和GIS的武汉城市热岛效应年代演变及其机理分析[J]. 长江流域资源与环境,2010(8):914-918.
[7] WAN Z. MODIS land-surface temperature algorithm theoretical basis document [EB/OL].[1999]. http://modis.gsfc.nasa.gov/data/atbd/atbd mod11.pdf.
[8] 董良鹏,江志红,沈素红. 近十年长江三角洲城市热岛变化及其与城市群发展的关系[J]. 大气科学学报,2014,17(2):146-154.
[9] 陈爱莲,孙然好,陈利顶. 基于景观格局的城市热岛研究进展[J].生态学报,2012,32(14):4553-4565.
[10] 葛伟强,周红妹,杨何群. 基于MODIS数据的近8年长三角城市群热岛特征及演变分析[J]. 气象,2010,36(1):77-81.
[11] 寿亦萱,张大林. 城市热岛效应的研究进展与展望[J]. 气象学报,2012(3):338-353.
[12] 汪高明. 湖北省近47年气温和降水气候特征分析[D].兰州:兰州大学硕士学位论文,2009.
[1] 姜磊, 周海峰, 柏玲. 长江中游城市群经济-城市-社会-环境耦合度空间差异分析[J]. 长江流域资源与环境, 2017, 26(05): 649-656.
[2] 陈优良, 陶天慧, 丁鹏. 长江三角洲城市群空气质量时空分布特征[J]. 长江流域资源与环境, 2017, 26(05): 687-697.
[3] 梅琳, 黄柏石, 敖荣军, 张涛. 长江中游城市群城市职能结构演变及其动力因子研究[J]. 长江流域资源与环境, 2017, 26(04): 481-489.
[4] 周志高, 林爱文, 王伦澈. 长江中游城市群太阳辐射长期变化特征及其与气象要素的关系研究[J]. 长江流域资源与环境, 2017, 26(04): 563-571.
[5] 杨欣, 蔡银莺, 张安录. 农田生态补偿横向财政转移支付额度研究——基于选择实验法的生态外溢视角[J]. 长江流域资源与环境, 2017, 26(03): 368-375.
[6] 朱婧瑄, 齐述华, 刘贵花, 王点, 熊梦雅. 2000~2013年鄱阳湖流域蒸散量时空变化[J]. 长江流域资源与环境, 2016, 25(Z1): 9-16.
[7] 李嬛, 宁越敏, 魏也华, 陈斐然. 长江经济带沿江城市群空间分布格局与联动机理研究[J]. 长江流域资源与环境, 2016, 25(12): 1797-1806.
[8] 崔玮, 苗建军, 邹伟. 武汉城市圈土地利用空间关联的碳排放效率及其收敛性分析[J]. 长江流域资源与环境, 2016, 25(12): 1824-1831.
[9] 彭霞, 郭冰瑶, 魏宁, 佘倩楠, 刘敏, 象伟宁. 近60 a长三角地区极端高温事件变化特征及其对城市化的响应[J]. 长江流域资源与环境, 2016, 25(12): 1917-1926.
[10] 张雅杰, 马明, 许刚. 长江中游城市群经济与生态成本空间演化模式分析[J]. 长江流域资源与环境, 2016, 25(11): 1679-1686.
[11] 周晓艳, 华敏, 秦雅雯, 马秀馨. 长江中游城市群空间联系研究[J]. 长江流域资源与环境, 2016, 25(10): 1492-1500.
[12] 戴德艺, 饶映雪, 刘殿锋, 刘成武. 1989~2015年武汉市城市格局时空演变分析[J]. 长江流域资源与环境, 2016, 25(10): 1545-1554.
[13] 王慧敏, 危小建, 刘耀林. 武汉城市圈公路沿线土地利用变化规律分析[J]. 长江流域资源与环境, 2016, 25(10): 1585-1593.
[14] 翟天林, 金贵, 邓祥征, 李兆华, 王润. 基于多源遥感影像融合的武汉市土地利用分类方法研究[J]. 长江流域资源与环境, 2016, 25(10): 1594-1602.
[15] 彭焕华, 李朝奎, 唐志光, 梁继. 丹江口库区陆地植被物候空间格局及其与海拔的响应关系[J]. 长江流域资源与环境, 2016, 25(10): 1626-1634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 李宗尧,|杨桂山. 经济快速发展地区生态环境竞争力的评价方法——以安徽沿江地区为例[J]. 长江流域资源与环境, 2008, 17(1): 124 .
[3] 季永兴. 上海多自然型河流整治实践与探索[J]. 长江流域资源与环境, 2008, 17(2): 264 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 毛战坡,单保庆,彭文启,王洪军. 氮素在河流生态系统中的滞留研究进展[J]. 长江流域资源与环境, 2006, 15(4): 480 -484 .
[6] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[7] 许有鹏,于瑞宏,马宗伟. 长江中下游洪水灾害成因及洪水特征模拟分析[J]. 长江流域资源与环境, 2005, 14(5): 638 -643 .
[8] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[9] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[10] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .