长江流域资源与环境 >> 2016, Vol. 25 >> Issue (05): 777-785.doi: 10.11870/cjlyzyyhj201605011

• 自然资源 • 上一篇    下一篇

重庆四面山杉木林优势种群径级结构与空间分布格局

卢炜丽1, 张洪江2, 陈奇伯1, 吴霖3, 栗宏林4   

  1. 1. 西南林业大学环境科学与工程学院, 云南 昆明 650224;
    2. 北京林业大学水土保持学院, 北京 100083;
    3. 昆明理工大学信自学院, 云南 昆明 650504;
    4. 西南林业大学林学院, 云南 昆明 650224
  • 收稿日期:2015-08-20 修回日期:2015-12-04 出版日期:2016-05-20
  • 通讯作者: 吴霖 E-mail:52038994@qq.com
  • 作者简介:卢炜丽(1979~),女,讲师,博士,主要从事水土保持与生态恢复方面的研究.E-mail:34514838@qq.com
  • 基金资助:
    国家自然科学基金资助项目(61163004);云南省高校优势特色重点学科(生态学)建设项目资助(05000511311)

SIZE STRUTURE AND SPATIAL DISTRIBUTION OF CUNNINGHAMIA LANCEOLATA POPULATIONS IN CHONGQING SIMIAN MOUNTAINOUS

LU Wei-li1, ZHANG Hong-jiang2, CHENG Qi-bo1, WU Lin3, LI Hong-lin4   

  1. 1. College of Environmental Science and Engineering, Southwest Forestry University, Kunming 650224, China;
    2. College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China;
    3. School of Information Engineering and Automation, Kunming University of Science & Technology, Kunming 650504, China;
    4. College of Resource Science, Southwest Forestry University, Kunming 650224, China
  • Received:2015-08-20 Revised:2015-12-04 Online:2016-05-20
  • Supported by:
    National Natural Science Foundation of China (61163004);Supported by Key Disciplines (Ecology) Project of Yunnan Education Department (05000511311)

摘要: 种群空间格局分析有利于更好地理解格局形成的潜在生态过程。本研究以重庆四面山杉木林为研究对象,采用单变量和双变量函数分析了样地中杉木林主要种群的空间分布格局以及种群间的空间关联性。结果表明:(1)四面山杉木林共调查到乔木65种、灌木31种、草本20种。杉木种群径级结构呈衰退型,表现为以大树为主,中树次之,无小树;腺萼马银花、元江栲、细枝柃等种群径级结构呈增长型,表现为以小树、中树为主,大树次之。(2)在0~25 m尺度内,杉木种群呈随机分布,栲和元江栲呈聚集分布,而腺萼马银花、细枝柃、光叶山矾和长蕊杜鹃等4个种群则在小尺度下呈聚集分布,随着尺度的增大,呈现出随机分布的趋势。(3)生物学特性以及生境因子的差异导致杉木林主要种群间空间关联差异较大,杉木与元江栲和腺萼马银花种群之间呈负相关,而与光叶山矾、栲和长蕊杜鹃种群呈无相关,因此,在该区杉木纯林的近自然改造上,应优先考虑竞争力强的乡土树种,如长蕊杜鹃、栲、光叶山矾等进行混交。

关键词: 点格局分析, 径级结构, 重庆四面山, 杉木林

Abstract: Point pattern analysis of species in a community is important for gaining a better understanding of the underlying ecological processes controlling the observed structure. In this paper, univariate and bivariate spatial point pattern analysis based on the pair-correlation function were used to evaluate the spatial patterns and associations of Cunninghamia lanceolat in Chongqing Simian Mountains. We found that:(1) There were 65 tree species, 31 shrub species and 20 herb species in the study plot. The population of Cunninghamia lanceolat was declining. The mature individuals were dominant, middle-aged were second in Cunninghamia lanceolat species and no young individuals; The young and middle-aged individuals were dominant, no mature individuals in Rhododendron bachii、,Castanopsis orthacantha and Castanopsis fargesii, these population were increasing. (2) At the 0-25 meter scale, the population of Cunninghamia lanceolat showed a random distribution, Castanopsis fargesii and Castanopsis orthacantha exhibited a clumped distribution, while the individuals of Rhododendron bachii, Eurya loquaiana, Symplocos lancifolia and Rhododendron stamineum were significantly clustered and as the scale increased, the distribution became random. (3) Because of biological properties and habitat factors, there was a big difference of spatial association between the main species. Cunninghamia lanceolat showed negative associations with Castanopsis orthacantha and Rhododendron bachii, but no associations with Rhododendron stamineum, Castanopsis fargesii and Symplocos lancifolia. So Rhododendron stamineum,、Castanopsis fargesii and Symplocos lancifolia should be given priority in near-natural reform of pure Cunninghamia lanceolat forest.

Key words: point pattern analysis, size structure, Chongqing Simian Mountainous, Cunninghamia lanceolata populations

中图分类号: 

  • S718
[1] 江洪. 云杉种群生态学[M]. 北京:中国林业出版社, 1992. [JIANG H. Spruce population ecology[M]. Beijing:China Forestry Press, 1992.]
[2] 张金屯, 孟东平. 芦芽山华北落叶松林不同龄级立木的点格局分析[J]. 生态学报, 2004, 24(1):35-40. [ZHANG J T, MENG D P. Spatial pattern analysis of individuals in different age-classes of Larix principis-rupprechtii in Luya mountain reserve, Shanxi, China[J]. Acta Ecologica Sinica, 2004, 24(1):35-40.]
[3] 李先琨, 苏宗明, 向悟生, 等. 濒危植物元宝山冷杉种群结构与分布格局[J]. 生态学报, 2002, 22(12):2246-2253. [LI X K, SU Z M, XIANG W S, et al. Study on the structure and spatial pattern of the endangered plant population of Abies yuanbaoshanensis[J]. Acta Ecologica Sinica, 2002, 22(12):2246-2253.]
[4] 刘保双, 付登高, 吴晓妮, 等. 滇中次生常绿阔叶林优势树种的空间格局[J]. 生态学杂志, 2013, 32(3):551-557. [LIU B S, FU D G, WU X N, et al. Spatial patterns of dominant species in secondary evergreen broad-leaved forest in central Yunnan, Southwest China[J]. Chinese Journal of Ecology, 2013, 32(3):551-557.]
[5] 樊登星, 余新晓. 北京山区栓皮栎林优势种群点格局分析[J]. 生态学报, 2016, 36(2):1-9. [FAN D X, YU X X. Spatial point pattern analysis of Quercus variabilis and Pinus tabulaeformis populations in a mountainous area of Beijing[J]. Acta Ecologica Sinica, 2016, 36(2):1-9.]
[6] 赵维军, 朱清科, 李萍, 等. 陕北黄土区林分空间点格局分析[J]. 应用基础与工程科学学报, 2014, 22(2):216-226. [ZHAO W J, ZHU Q K, LI P, et al. Spatial point pattern analysis on forest stands in loess slope, Northern Shaanxi[J]. Journal of Basic Science and Engineering, 2014, 22(2):216-226.]
[7] HERRERO-JÁUREGUI C, SIST P, CASADO M A. Population structure of two low-density Neotropical tree species under different management systems[J]. Forest Ecology and Management, 2012, 280:31-39.
[8] LARSON A J, CHURCHILL D. Tree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments[J]. Forest Ecology and Management, 2012, 267:74-92.
[9] MONTES F, BARBEITO I, RUBIO A, et al. Evaluating height structure in Scots pine forests using marked point processes[J]. Canadian Journal of Forest Research, 2008, 38(7):1924-1934.
[10] 李伟, 王瑞雪, 张光富, 等. 南方红豆杉迁地保护种群的点格局分析[J]. 生态学杂志, 2014, 33(1):16-22. [LI W, WANG R X, ZHANG G F, et al. Point pattern analysis of ex-situ population of Taxus wallichiana var. mairei[J]. Chinese Journal of Ecology, 2014, 33(1):16-22.]
[11] 李明辉, 何风华, 潘存德. 天山云杉天然林不同林层的空间格局和空间关联性[J]. 生态学报, 2011, 31(3):620-628. [LI M H, HE F H, PAN C D. Spatial distribution pattern of different strata and spatial assocations of different strata in the Schrenk Spruce Forest, northwest China[J]. Acta Ecologica Sinica, 2011, 31(3):620-628.]
[12] 肖文发, 程瑞梅, 李建文, 等. 三峡库区杉木林群落多样性研究[J]. 生态学杂志, 2001, 20(1):1-4. [XIAO W F, CHENG R M, LI J W, et al. Community diversity of Cunninghamia lanceolata forest in the three gorges reservoir area[J]. Chinese Journal of Ecology, 2001, 20(1):1-4.]
[13] 李燕芬, 铁军, 张桂萍, 等. 山西蟒河国家级自然保护区人工油松林生态位特征[J]. 生态学杂志, 2014, 33(11):2905-2912. [LI Y F, TIE J, ZHANG G P, et al. Niche characteristics of an artificial Pinus tabuliformis forest in Manghe National Nature Reserve of Shanxi[J]. Chinese Journal of Ecology, 2014, 33(11):2905-2912.]
[14] 王峥峰, 高三红, GODT M J W, 等. 人为干扰下南亚热带厚壳桂种群分布格局[J]. 生态学报, 2005, 25(12):3289-3293. [WANG Z F, GAO S H, GODT M J W, et al. Cryptocarya chinens is spatial distribution patterns caused by human disturbance in the lower subtropical monsoon evergreen broad-leaved forest[J]. Acta Ecologica Sinica, 2005, 25(12):3289-3293.]
[15] 农友, 郑路, 贾宏炎, 等. 广西大青山次生林的群落特征及主要乔木种群的空间分布格局[J]. 生物多样性, 2015, 23(3):321-331. [NONG Y, ZHENG L, JIA H Y, et al. Community characteristics and spatial distribution of dominant tree species in a secondary forest of Daqing Mountains, southwestern Guangxi, China[J]. Biodiversity Science, 2015, 23(3):321-331.]
[16] 郭屹立, 王斌, 向悟生, 等. 广西弄岗北热带喀斯特季节性雨林监测样地种群空间点格局分析[J]. 生物多样性, 2015, 23(2):183-191. [GUO Y L, WANG B, XIANG W S, et al. Spatial distribution of tree species in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China[J]. Biodiversity Science, 2015, 23(2):183-191.]
[17] 闫海冰, 韩有志, 杨秀清, 等. 华北山地典型天然次生林群落的树种空间分布格局及其关联性[J]. 生态学报, 2010, 30(9):2311-2321. [YAN H B, HAN Y Z, YANG X Q, et al. Spatial distribution patterns and associations of tree species in typical natural Secondary mountain forest communities of Northern China[J]. Acta Ecologica Sinica, 2010, 30(9):2311-2321.]
[18] 缪宁, 刘世荣, 史作民, 等. 青藏高原东缘林线杜鹃-岷江冷杉原始林的空间格局[J]. 生态学报. 2011, 31(1):1-9. [MIAO N, LIU S R, SHI Z M, et al. Spatial pattern analysis of a Rhododendron-Abies virginal forest near timberline on the eastern edge of Qinghai-Tibetan Plateau, China[J]. Acta Ecologica Sinica, 2011, 31(1):1-9.]
[19] 刘振国, 李镇清. 植物群落中物种小尺度空间结构研究[J]. 植物生态学报, 2005, 29(6):1020-1028. [LIU Z G, LI Z Q. Perspectives on small-scale spatial structure of plant species in plant communities[J]. Acta Phytoecologica Sinica, 2005, 29(6):1020-1028.]
[20] 张健, 郝占庆, 宋波, 等. 长白山阔叶红松林中红松与紫椴的空间分布格局及其关联性[J]. 应用生态学报, 2007, 18(8):1681-1687. [ZHANG J, HAO Z Q, SONG B, et al. Spatial distribution patterns and associations of Pinus koraiensis and Tilia amurensis in broad-leaved Korean pine mixed forest in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2007, 18(8):1681-1687.]
[21] 郭忠玲, 马元丹, 郑金萍, 等. 长白山落叶阔叶混交林的物种多样性、种群空间分布格局及种间关联性研究[J]. 应用生态学报, 2004, 15(11):2013-2018. [GUO Z L, MA Y D, ZHENG J P, et al. Biodiversity of tree species, their populations' spatial distribution pattern and interspecific association in mixed deciduous broadleaved forest in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2004, 15(11):2013-2018.]
[22] 王磊, 孙启武, 郝朝运, 等. 皖南山区南方红豆杉种群不同龄级立木的点格局分析[J]. 应用生态学报, 2010, 21(2):272-278. [WANG L, SUN Q W, HAO C Y, et al. Point pattern analysis of different age-class Taxus chinensis var. Mairei individuals in mountainous area of southern Anhui Province[J]. Chinese Journal of Applied Ecology, 2010, 21(2):272-278.]
[23] 郭垚鑫, 康冰, 李刚, 等. 小陇山红桦次生林物种组成与立木的点格局分析[J]. 应用生态学报, 2011, 22(10):2574-2580. [GUO Y X, KANG B, LI G, et al. Species composition and point pattern analysis of standing trees in secondary Betula albo-sinensis forest in Xiaolongshan of west Qinling Mountains[J]. Chinese Journal of Applied Ecology, 2011, 22(10):2574-2580.]
[24] 闫海冰, 韩有志, 杨秀清, 等. 华北山地典型天然次生林群落的树种空间分布格局及其关联性[J]. 生态学报, 2010, 30(9):2311-2321. [YAN H B, HAN Y Z, YANG X Q, et al. Spatial distribution patterns and associations of tree species in typical natural Secondary mountain forest communities of Northern China[J]. Acta Ecologica Sinica, 2010, 30(9):2311-2321.]
[25] 白芝兵, 张洪江, 程金花, 等. 重庆四面山杉木群落物种多样性研究[J]. 生态与农村环境学报, 2010, 26(2):142-147. [BAI Z B, ZHANG H J, CHENG J H, et al. Species diversity of Chinese fir community in Simian Mountain of Chongqing[J]. Journal of Ecology and Rural Environment, 2010, 26(2):142-147.]
[26] 林武星, 叶功富, 黄金瑞, 等. 杉木萌芽更新原理及技术述评[J]. 福建林业科技, 1996, 23(2):19-23. [LIN W X, YE G F, HUANG J R, et al. A review of sprout Regeneration principles and techniques of Chinese Fir[J]. Journal of Fujian Forestry Science & Technology, 1996, 23(2):19-23.]
[27] 陆元昌, 张守攻, 雷相东, 等. 人工林近自然化改造的理论基础和实施技术[J]. 世界林业研究, 2009(1):20-27. [LU Y C, ZHANG S G, LEI X D, et al. Theoretical basis and implementation techniques on close-to-nature transformation of plantations[J]. World Forestry Research, 2009(1):20-27.]
[1] 黄宰胜, 陈钦. 不同情境下桉树碳汇林最佳轮伐期分析[J]. 长江流域资源与环境, 2016, 25(Z1): 25-31.
[2] 石小亮, 张颖, 单永娟, 段维娜. 云南省高原典型森林植被涵养水源功能研究[J]. 长江流域资源与环境, 2015, 24(08): 1366-1372.
[3] 徐李亚, 杨万勤, 李晗, 倪祥银, 何洁, 吴福忠. 长江上游高山森林林窗对凋落物分解过程中可溶性碳的影响[J]. 长江流域资源与环境, 2015, 24(05): 882-891.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂钠, 于坤香. 我国世界自然遗产地旅游业环境经济核算思路[J]. 长江流域资源与环境, 2009, 18(2): 121 .
[2] 曹银贵,王 静,程 烨,刘爱霞,许 宁,郝 银,饶彩霞. 三峡库区土地利用变化与影响因子分析[J]. 长江流域资源与环境, 2007, 16(6): 748 .
[3] 徐俊杰, 何 青, 刘 红, 陈吉余. 2006年长江特枯径流特征及其原因初探[J]. 长江流域资源与环境, 2008, 17(5): 716 .
[4] 游庆龙. 三江源地区1961~2005年气温极端事件变化[J]. 长江流域资源与环境, 2008, 17(2): 232 .
[5] 吴炳方,罗治敏. 基于遥感信息的流域生态系统健康评价——以大宁河流域为例[J]. 长江流域资源与环境, 2007, 16(1): 102 -106 .
[6] 郝红升,李克锋,李然,赵再兴. 取水口高程对过渡型水库水温分布结构的影响[J]. 长江流域资源与环境, 2007, 16(1): 21 -25 .
[7] 刘承良, 田 颖, 梁 滨,5. 武汉城市圈产业经济的系统性分析[J]. 长江流域资源与环境, 2009, 18(1): 1 .
[8] 伍新木,廖 丹,严 瑾. 制度创新:依托武汉建设长江中游城市群[J]. 长江流域资源与环境, 2004, 13(1): 1 -6 .
[9] 李翀,廖文根,彭静,叶柏生. 宜昌站1900~2004年生态水文特征变化[J]. 长江流域资源与环境, 2007, 16(1): 76 -80 .
[10] 张心怡,刘 敏,孟 飞. 基于RS和GIS的上海城建用地扩展研究[J]. 长江流域资源与环境, 2006, 15(1): 29 -33 .