长江流域资源与环境 >> 2017, Vol. 26 >> Issue (01): 100-109.doi: 10.11870/cjlyzyyhj201701012

• 生态环境 • 上一篇    下一篇

互花米草入侵对长江河口湿地土壤理化性质的影响

布乃顺1, 胡悦1, 杨骁1, 张雪1, 王俭1, 李博2, 方长明2, 宋有涛1   

  1. 1. 辽宁大学环境学院, 辽宁 沈阳 110036;
    2. 复旦大学生命科学学院, 上海 200438
  • 收稿日期:2016-05-26 修回日期:2016-08-02 出版日期:2017-01-20
  • 通讯作者: 宋有涛,E-mail:378560857@qq.com E-mail:378560857@qq.com
  • 作者简介:布乃顺(1982~),男,讲师,博士,主要研究方向为湿地生态学和土壤生态学.E-mail:bunaishun@163.com
  • 基金资助:
    国家水体污染控制与治理科技重大专项(2015ZX07202-012);国家重点基础研究发展计划项目(2010CB950600);科技部支撑计划(2010BAK69B14)

EFFECTS OF SPARTINA ALTERNIFLORA INVASION ON SOIL PHYSICAL AND CHEMICAL PROPERTIES IN WETLANDS OF THE YANGTZE RIVER ESTUARY

BU Nai-shun1, HU Yue1, YANG Xiao1, ZHANG Xue1, WANG Jian1, LI Bo2, FANG Chang-ming2, SONG You-tao1   

  1. 1. School of Environmental Science, Liaoning University, Shenyang 110036, China;
    2. School of Life Science, Fudan University, Shanghai 200438, China
  • Received:2016-05-26 Revised:2016-08-02 Online:2017-01-20
  • Supported by:
    National Water Pollution Control and Treatment Science and Technology Major Project(2015ZX07202-012);National Program on Key Basic Research Project(2010CB950600);National Science and Technology Support Program(2010BAK69B14)

摘要: 为了探讨互花米草入侵对长江河口湿地土壤理化性质的影响,在长江口崇明东滩湿地设置了两条样线,利用配对试验设计,高潮滩为互花米草和芦苇群落配对样线,低潮滩为互花米草和海三棱藨草群落配对样线。结果表明,互花米草入侵对东滩湿地高潮滩和低潮滩的土壤温度和pH均无显著影响,且所有群落土壤pH值均在8.0以上。在高潮滩,与芦苇群落相比,互花米草入侵显著降低了土壤盐度、硫酸盐和Fe(III)/Fe(II)比率,而在低潮滩,与海三棱藨草群落相比,互花米草入侵对土壤盐度和硫酸盐无显著影响,但显著增加了土壤Fe(III)/Fe(II)比率。无论是高潮滩,还是低潮滩,与土著植物群落相比,互花米草入侵均显著增加了植物生物量,增加了土壤有机碳和微生物碳含量,而对占土壤总碳60%以上的无机碳含量无显著影响。互花米草入侵可以显著影响长江河口湿地部分土壤理化性质,且对不同潮位的部分土壤理化性质的影响有明显分异,进而可能会对长江河口湿地的生物地球化学过程及生态系统的结构和功能产生重要影响。

关键词: 互花米草, 长江河口湿地, 植物入侵, 土壤理化性质, 土壤有机碳, 土壤无机碳

Abstract: In this study we investigated the effects of Spartina alterniflora invasion on soil physical and chemical properties as well as potential underlying mechanisms of these effects in the wetlands of the Yangtze River estuary. Two sampling transects in the Dongtan wetland in the Yangtze River estuary, both parallel to the dike, were set up and three sites were evenly distributed on each transect. The transect in the high tidal zone, including three sites (H-sites), was 1.5 km long, and the other transect in the low tidal zone, also including three sites (L-sites), was 0.8 km long. At each site, closely adjacent S. alterniflora-Phragmites australis (H-sites) and S. alterniflora-Scirpus mariqueter (L-sites) stands were selected. In each of the adjacent stands, three plots were randomly selected for plant and soil sampling. This experimental design was used to minimize the potential effects of heterogeneous environmental conditions, such as tidal inundation in the wetland. In S. alterniflora stands, soil temperature was not significantly different from that in the native plant stands. Soil moisture was significantly higher in S. alterniflora stands than that in the native stands in both H-sites and L-sites. Soil pH was not affected by plant invasion or tide zones. At H-sites, soil salinity and sulfate content in S. alterniflora stands were significantly lower than those in P. australis stands, while there was no difference in soil salinity and sulfate content between S. alterniflora and S. mariqueter stands at L-sites. At H-sites, the soil Fe(III)/Fe(II) ratios in S. alterniflora stands were significantly lower than in P. australis stands, but were significantly higher than in the S. mariqueter stands in L-sites. In both H- and L-sites, plant biomass were significantly higher in S. alterniflora stands than those in the native plant stands. S. alterniflora stands experienced significantly higher SOC and SMBC than the native plant stands in both H-sites and L-sites. There were no significant difference in soil inorganic carbon (SIC) between plant species or tide zones. Estimated SIC in the Dongtan wetland accounted for more than 60% of total carbon in soil. The lack of difference in SIC between S. alterniflora and the native plant stands suggested that total carbon in coastal wetland soils cannot appropriately reflect the effects of S. alterniflora invasion. These results indicate that S. alterniflora invasion has significantly impacted soil physical and chemical properties of wetlands in the Yangtze River estuary and these effects differed greatly between tidal zones. These findings suggest that S. alterniflora invasion may profoundly impact decomposition of soil organic matter, biogeochemical processes as well ecosystem structure and functions through altering soil properties.

Key words: Spartina alterniflora, the Yangtze River estuary, plant invasion, soil physical and chemical properties, soil organic carbon, soil inorganic carbon

中图分类号: 

  • Q948
[1] VAN KLEUNEN M, DAWSON W, ESSL F, et al. Global exchange and accumulation of non-native plants[J]. Nature, 2015, 525(7567):100-103.
[2] VILÀ M, ESPINAR J L, HEJDA M, et al. Ecological impacts of invasive alien plants:a meta-analysis of their effects on species, communities and ecosystems[J]. Ecology Letters, 2011, 14(7):702-708.
[3] SEEBENS H, ESSL F, DAWSON W, et al. Global trade will accelerate plant invasions in emerging economies under climate change[J]. Global Change Biology, 2015, 21(11):4128-4140.
[4] DOSTÁLEK T, MÜNZBERGOVÁ Z, KLADIVOVÁ A, et al. Plant-soil feedback in native vs. invasive populations of a range expanding plant[J]. Plant and Soil, 2016, 399(1/2):209-220.
[5] IBARRA-OBANDO S E, POUMIAN-TAPIA M, MORZARIA-LUNA H N. Long-term effects of tidal exclusion on salt marsh plain species at Estero de Punta Banda, Baja California[J]. Estuaries and Coasts, 2010, 33(3):753-768.
[6] SILVESTRI S, DEFINA A, MARANI M. Tidal regime, salinity and salt marsh plant zonation[J]. Estuarine, Coastal and Shelf Science, 2005, 62(1/2):119-130.
[7] SASAKI A, HAGIMORI Y, NAKATSUBO T, et al. Tidal effects on the organic carbon mineralization rate under aerobic conditions in sediments of an intertidal estuary[J]. Ecological Research, 2009, 24(4):723-729.
[8] TAILLEFERT M, NEUHUBER S, BRISTOW G. The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments[J]. Geochemical Transactions, 2007, 8(1):6.
[9] MARCHANTE E, KJØLLER A, STRUWE S, et al. Short- and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem[J]. Applied Soil Ecology, 2008, 40(2):210-217.
[10] HENEGHAN L, FATEMI F, UMEK L, et al. The invasive shrub European buckthorn (Rhamnus cathartica, L.) alters soil properties in Midwestern U. S. woodlands[J]. Applied Soil Ecology, 2006, 32(1):142-148.
[11] HERR C, CHAPUIS-LARDY L, DASSONVILLE N, et al. Seasonal effect of the exotic invasive plant Solidago gigantea on soil pH and P fractions[J]. Journal of Plant Nutrition and Soil Science, 2007, 170(6):729-738.
[12] OSUNKOYA O O, PERRETT C. Lantana camara L. (Verbenaceae) invasion effects on soil physicochemical properties[J]. Biology and Fertility of Soils, 2010, 47(3):349-355.
[13] CHACÓN N, HERRERA I, FLORES S, et al. Chemical, physical, and biochemical soil properties and plant roots as affected by native and exotic plants in Neotropical arid zones[J]. Biology and Fertility of Soils, 2009, 45(3):321-328.
[14] GRATTON C, DENNO R F. Restoration of arthropod assemblages in a Spartina salt marsh following removal of the invasive plant Phragmites australis[J]. Restoration Ecology, 2005, 13(2):358-372.
[15] RAVIT B, EHENFELD J G, HÄGGBLOM M M. Effects of vegetation on root-associated microbial communities:a comparison of disturbed versus undisturbed estuarine sediments[J]. Soil Biology and Biochemistry, 2006, 38(8):2359-2371.
[16] ANGELONI N L, JANKOWSKI K J, TUCHMAN N C, et al. Effects of an invasive cattail species (Typha×glauca) on sediment nitrogen and microbial community composition in a freshwater wetland[J]. FEMS Microbiology Letters, 2006, 263(1):86-92.
[17] ZEDLER J B, KERCHER S. Causes and consequences of invasive plants in wetlands:opportunities, opportunists, and outcomes[J]. Critical Reviews in Plant Sciences, 2004, 23(5):431-452.
[18] 王卿, 安树青, 马志军, 等. 入侵植物互花米草——生物学、生态学及管理[J]. 植物分类学报, 2006, 44(5):559-588. [WANG Q, AN S Q, MA Z J, et al. Invasive Spartina alterniflora:biology, ecology and management[J]. Acta Phytotaxonomica Sinica, 2006, 44(5):559-588.]
[19] LI B, LIAO C H, ZHANG X D, et al. Spartina alterniflora invasions in the Yangtze River estuary, China:an overview of current status and ecosystem effects[J]. Ecological Engineering, 2009, 35(4):511-520.
[20] 徐伟伟, 王国祥, 刘金娥, 等. 苏北海滨湿地互花米草种群繁殖方式[J]. 生态学报, 2014, 34(14):3839-3847. [XU W W, WANG G X, LIU J E, et al. Two reproductive mode of Spartina alterniflora on coastal wetland of North Jiangsu[J]. Acta Ecologica Sinica, 2014, 34(14):3839-3847.]
[21] 曹浩冰, 葛振鸣, 祝振昌, 等. 崇明东滩盐沼植被扩散格局及其形成机制[J]. 生态学报, 2014, 34(14):3944-3952. [CAO H B, GE Z M, ZHU Z C, et al. The expansion pattern of saltmarshes at Chongming Dongtan and its underlying mechanism[J]. Acta Ecologica Sinica, 2014, 34(14):3944-3952.]
[22] 刘钰, 李秀珍, 闫中正, 等. 长江口九段沙盐沼湿地芦苇和互花米草生物量及碳储量[J]. 应用生态学报, 2013, 24(8):2129-2134. [LIU Y, LI X Z, YAN Z Z, et al. Biomass and carbon storage of Phragmites australis and Spartina alterniflora in Jiuduan Shoal Wetland of Yangtze Estuary, East China[J]. Chinese Journal of Applied Ecology, 2013, 24(8):2129-2134.]
[23] JIANG L F, LUO Y Q, CHEN J K, et al. Ecophysiological characteristics of invasive Spartina alterniflora and native species in salt marshes of Yangtze River estuary, China[J]. Estuarine, Coastal and Shelf Science, 2009, 81(1):74-82.
[24] 欧阳林梅, 王纯, 王维奇, 等. 互花米草与短叶茳芏枯落物分解过程中碳氮磷化学计量学特征[J]. 生态学报, 2013, 33(2):389-394. [OUYANG L M, WANG C, WANG W Q, et al. Carbon, nitrogen and phosphorus stoichiometric characteristics during the decomposition of Spartina alterniflora and Cyperus malaccensis var. brevifolius litters[J]. Acta Ecologica Sinica, 2013, 33(2):389-394.]
[25] LIAO C Z, LUO Y Q, JIANG L F, et al. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China[J]. Ecosystems, 2007, 10(8):1351-1361.
[26] CHEN H L, LI B, HU J B, et al. Effects of Spartina alterniflora invasion on benthic nematode communities in the Yangtze Estuary[J]. Marine Ecology Progress Series, 2007, 336:99-110.
[27] GAN X J, CAI Y T, CHOI C, et al. Potential impacts of invasive Spartina alterniflora on spring bird communities at Chongming Dongtan, a Chinese wetland of international importance[J]. Estuarine, Coastal and Shelf Science, 2009, 83(2):211-218.
[28] 赵彩云, 柳晓燕, 白加德, 等. 广西北海西村港互花米草对红树林湿地大型底栖动物群落的影响[J]. 生物多样性, 2014, 22(5):630-639. [ZHAO C Y, LIU X Y, BAI J D, et al. Impact of Spartina alterniflora on benthic macro-invertebrates communities on mangrove wetland in Xicungang Estuary, Guangxi[J]. Biodiversity Science, 2014, 22(5):630-639.]
[29] 江旷, 陈小南, 鲍毅新, 等. 互花米草入侵对大型底栖动物群落垂直结构的影响[J]. 生态学报, 2016, 36(2):535-544. [JIANG K, CHEN X N, BAO Y X, et al. Effect of Spartina alterniflora invasion on the vertical structure of macrobenthic community[J]. Acta Ecologica Sinica, 2016, 36(2):535-544.]
[30] 彭容豪. 互花米草对河口盐沼生态系统氮循环的影响——上海崇明东滩实例研究[D]. 上海:复旦大学博士学位论文, 2009. [PENG R H. The effects of exotic plant Spartina alterniflora on ecosystem nitrogen cycling in estuarine salt marsh:a case study at Dongtan Wetland, Chongming Island, Shanghai[D]. Shanghai:Doctor Dissertation of Fudan University, 2009.]
[31] YANG S L, DING P X, CHEN S L. Changes in progradation rate of the tidal flats at the mouth of the Changjiang (Yangtze) River, China[J]. Geomorphology, 2001, 38(1/2):167-180.
[32] ZHAO B, YAN Y E, GUO H Q, et al. Monitoring rapid vegetation succession in estuarine wetland using time series MODIS-based indicators:an application in the Yangtze River Delta area[J]. Ecological Indicators, 2009, 9(2):346-356.
[33] LOVLEY D R, PHILLIPS E J P. Rapid assay for microbially reducible ferric iron in aquatic sediments[J]. Applied and Environmental Microbiology, 1987, 53(7):1536-1540.
[34] WU J, JOERGENSEN R G, POMMERENING B, et al. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure[J]. Soil Biology and Biochemistry, 1990, 22(8):1167-1169.
[35] EHRENFELD J G, RAVIT B, ELGERSMA K. Feedback in the plant-soil system[J]. Annual Review of Environment and Resources, 2005, 30(1):75-115.
[36] 刘效东, 乔玉娜, 周国逸. 土壤有机质对土壤水分保持及其有效性的控制作用[J]. 植物生态学报, 2011, 35(12):1209-1218. [LIU X D, QIAO Y N, ZHOU G Y, et al. Controlling action of soil organic matter on soil moisture retention and its availability[J]. Chinese Journal of Plant Ecology, 2011, 35(12):1209-1218.]
[37] LIAO C Z, LUO Y Q, FANG C M, et al. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary[J]. Oecologia, 2008, 156(3):589-600.
[38] ZHAO K F, SONG J, FENG G, et al. Species, types, distribution, and economic potential of halophytes in China[J]. Plant and Soil, 2011, 342(1/2):495-509.
[39] UNGAR I A. Ecophysiology of vascular halophyte[M]. Boca Raton:CRC Press, 1991.
[40] TANG L, GAO Y, WANG C H, et al. How tidal regime and treatment timing influence the clipping frequency for controlling invasive Spartina alterniflora:implications for reducing management costs[J]. Biological Invasions, 2010, 12(3):593-601.
[41] HINES M E, BANTA G T, GIBLIN A E, et al. Acetate concentrations and oxidation in salt-marsh sediments[J]. Limnology and Oceanography, 1994, 39(1):140-148.
[42] MOZDZER T J, KIRWAN M, MCGLATHERY K J, et al. Nitrogen uptake by the shoots of smooth cordgrass Spartina alterniflora[J]. Marine Ecology Progress Series, 2011, 433:43-52.
[43] PATRA S, LIU C Q, LI S L, et al. A geochemical study on carbon cycling in the Changjiang estuary[J]. Earth and Environment, 2010, 38(4):409-413.
[44] 布乃顺, 王坤, 侯玉乐, 等. 半月周期的潮汐对滨海湿地土壤理化性质的影响[J]. 长江流域资源与环境, 2015, 24(11):1898-1905. [BU N S, WANG K, HOU Y L, et al. Effects of semi-lunar tidal cycling on soil physical and chemical properties in coastal wetlands[J]. Resources and Environment in the Yangtze Basin, 2015, 24(11):1898-1905.]
[45] ZOU Y C, LU X G, JIANG M. Dynamics of dissolved iron under pedohydrological regime caused by pulsed rainfall events in wetland soils[J]. Geoderma, 2009, 150(1/2):46-53.
[46] HOWES B L, TEAL J M. Oxygen loss from Spartina alterniflora and its relationship to salt marsh oxygen balance[J]. Oecologia, 1994, 97(4):431-438.
[47] 李学刚, 吕晓霞, 孙云明, 等. 渤海沉积物中的"活性铁"与其氧化还原环境的关系[J]. 海洋环境科学, 2003, 22(1):20-24. [LI X G, LÜ X X, SUN Y M, et al. Relation of active iron and redox environments in the sediments of Bohai Sea[J]. Marine Environmental Science, 2003, 22(1):20-24.]
[48] ALLER R C. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors[J]. Marine Chemistry, 1998, 61(3/4):143-155.
[49] PENG R H, FANG C M, LI B, et al. Spartina alterniflora invasion increases soil inorganic nitrogen pools through interactions with tidal subsidies in the Yangtze Estuary, China[J]. Oecologia, 2011, 165(3):797-807.
[50] VAN KLEUNEN M, WEBER E, FISCHER M. A meta-analysis of trait differences between invasive and non-invasive plant species[J]. Ecology Letters, 2010, 13(2):235-245.
[51] OSUNKOYA O O, BAYLISS D, PANETTA F D, et al. Variation in ecophysiology and carbon economy of invasive and native woody vines of riparian zones in south-eastern Queensland[J]. Austral Ecology, 2010, 35(6):636-649.
[52] BARUCH Z, GOLDSTEIN G. Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii[J]. Oecologia, 1999, 121(2):183-192.
[53] 祖元刚, 李冉, 王文杰, 等. 我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性[J]. 生态学报, 2011, 31(18):5207-5216. [ZU Y G, LI R, WANG W J, et al. Soil organic and inorganic carbon contents in relation to soil physicochemical properties in northeastern China[J]. Acta Ecologica Sinica, 2011, 31(18):5207-5216.]
[54] BATJES N H, SOMBROEK W G. Possibilities for carbon sequestration in tropical and subtropical soils[J]. Global Change Biology, 1997, 3(2):161-173.
[55] CHENG X L, LUO Y Q, CHEN J Q, et al. Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine Island[J]. Soil Biology and Biochemistry, 2006, 38(12):3380-3386.
[1] 张文婷. 江西省不同地貌单元耕地土壤有机碳空间变异的尺度效应[J]. 长江流域资源与环境, 2018, 27(11): 2619-2628.
[2] 和丽萍, 孟广涛, 李贵祥, 李品荣, 柴勇. 金沙江头塘小流域人工林有机碳及其剖面分布特征[J]. 长江流域资源与环境, 2016, 25(03): 476-485.
[3] 布乃顺, 王坤, 侯玉乐, 李钢, 齐淑娟, 方长明, 渠俊峰. 半月周期的潮汐对滨海湿地土壤理化性质的影响[J]. 长江流域资源与环境, 2015, 24(11): 1898-1905.
[4] 许乃政 , 张桃林, 王兴祥, 刘红樱, 梁晓红. 长江三角洲地区土壤无机碳库研究[J]. 长江流域资源与环境, 2009, 18(11): 1038-.
[5] 李 生,张守攻,姚小华,任华东. 黔中石漠化地区不同土地利用方式对土壤环境的影响[J]. 长江流域资源与环境, 2008, 17(3): 384-384.
[6] 陈亮中,谢宝元,肖文发,黄志霖. 三峡库区主要森林植被类型土壤有机碳贮量研究[J]. 长江流域资源与环境, 2007, 16(5): 640-640.
[7] 唐国勇,彭佩钦,苏以荣,童成立,吴金水,黄伟生,朱奇宏. 洞庭湖区不同利用方式下农田土壤有机碳含量特征[J]. 长江流域资源与环境, 2006, 15(2): 219-222.
[8] 芮雯奕,周 博,张卫建. 长江三角洲水田保护性耕作制度的碳收集效应估算[J]. 长江流域资源与环境, 2006, 15(2): 207-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 张代钧,许丹宇,任宏洋,曹海彬,郑 敏,刘惠强. 长江三峡水库水污染控制若干问题[J]. 长江流域资源与环境, 2005, 14(5): 605 -610 .
[10] 王肇磊, 贺新枝. 晚清时期湖北自然灾害的治理及其经验教训[J]. 长江流域资源与环境, 2009, 18(11): 1080 .