长江流域资源与环境 >> 2017, Vol. 26 >> Issue (01): 91-99.doi: 10.11870/cjlyzyyhj201701011
龚元1, 赵敏1, 姚鑫2, 郭智娟2, 何毅1, 张立平1, 林文鹏1
GONG Yuan1, ZHAO Min1, YAO Xin2, GUO Zhi-juan2, HE Yi1, ZHANG Li-ping1, LIN Wen-peng1
摘要: 随着城市化进程的加速和城市人口规模的增加,城市已成为最大的碳源,研究城市生态系统对大气二氧化碳的贡献成为碳循环研究的焦点问题之一。基于研究区域内土地利用现状和一年的涡动观测系统观测数据,结合地理信息技术(ArcGIS)和通量计算工具(Eddypro 及ART Footprint Tool)以及碳通量足迹模型分析了上海奉贤大学城碳通量足迹特征,基于此探讨不同下垫面类型,包括以草本和木本等透水层为主的下垫面(称为自然系统),以建筑物、道路等不透水层为主的下垫面(称为社会系统)碳通量的变化特征。研究结果表明:1)在不同风向上,碳通量贡献区范围随着大气稳定度的增加而扩大。大气处于稳定条件下,非主风向上的碳通量贡献区范围(最大范围1 100 m)比主风向上的碳通量贡献区范围(最大范围780m)要大;当大气处于不稳定条件下时主风向和非主风向下的碳通量贡献区范围相差不大(最大范围分别为321和351m)。2)不同下垫面其源汇特征不同,以绿色植物为主的自然系统年碳通量均值为-4.1μmol/m2/s,表现为碳汇;社会系统的年碳通量均值为8.6μmol/m2/s,表现为碳源。3)自然系统的碳通量日变化具有较明显的季节分异,变化特征大致呈“U”型;社会系统的碳通量日变化没有明显的季节分异,变化特征大致呈“M”型。绿色植物对城市生态系统的大气二氧化碳有降低作用,结合自然和社会系统的碳通量变化特征可以为以后合理规划城市布局,建立低碳城市提供服务。
中图分类号:
[1] 赵荣钦, 黄贤金. 城市系统碳循环:特征、机理与理论框架[J]. 生态学报. 2013, 33(2):358-366. [ZHAO R Q, HUANG X J. Carbon cycle of urban system:characteristics, mechanism and theoretical framework[J]. Acta Ecologica Sinica, 2013, 33(2):358-366.] [2] 袁庄鹏, 赵敏. 基于FSAM模型的城市碳通量观测贡献区研究[J]. 上海师范大学学报(自然科学版), 2012, 41(5):533-539. [YUAN Z P, ZHAO M. Research of flux footprint of city based on the FSAM model[J]. Journal of Shanghai Normal University (Natural Sciences), 2012, 41(5):533-539.] [3] GAHAGAN A, GIARDINA C P, KING J S, et al. Carbon fluxes, storage and harvest removals through 60 years of stand development in red pine plantations and mixed hardwood stands in Northern Michigan, USA[J]. Forest Ecology and Management, 2015, 337:88-97. [4] SHAH M V, BADLE S S, RAMACHANDRAN K B. Hyaluronic acid production and molecular weight improvement by redirection of carbon flux towards its biosynthesis pathway[J]. Biochemical Engineering Journal, 2013, 80:53-60. [5] O'HAGAN A. Probabilistic uncertainty specification:overview, elaboration techniques and their application to a mechanistic model of carbon flux[J]. Environmental Modelling & Software, 2012, 36:35-48. [6] GREGG W W, CASEY N W, ROUSSEAUX C S. Sensitivity of simulated global ocean carbon flux estimates to forcing by reanalysis products[J]. Ocean Modelling, 2014, 80:24-35. [7] BORCHARD N, SCHIRRMANN M, VON HEBEL C, et al. Spatio-temporal drivers of soil and ecosystem carbon fluxes at field scale in an upland grassland in Germany[J]. Agriculture, Ecosystems & Environment, 2015, 211:84-93. [8] HARRIS A, DASH J. The potential of the MERIS Terrestrial Chlorophyll Index for carbon flux estimation[J]. Remote Sensing of Environment, 2010, 114(8):1856-1862. [9] MILANOLO S, GABROVŠEK F. Estimation of carbon dioxide flux degassing from percolating waters in a karst cave:case study from Bijambare cave, Bosnia and Herzegovina[J]. Chemie der Erde-Geochemistry, 2015, 75(4):465-474. [10] STROHBACH M W, ARNOLD E, HAASE D. The carbon footprint of urban green space-a life cycle approach[J]. Landscape and Urban Planning, 2012, 104(2):220-229. [11] 刘郁珏, 胡非, 程雪玲, 等. 北京城市通量足迹及源区分布特征分析[J]. 大气科学, 2014, 38(6):1044-1054. [LIU Y J, HU F, CHENG X L, et al. Distribution of the source area and footprint of Beijing[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(6):1044-1054.] [12] 袁庄鹏. 碳通量变化特征及影响因子研究[D]. 上海:上海师范大学硕士学位论文, 2013. [13] 顾永剑, 高宇, 郭海强, 等. 崇明东滩湿地生态系统碳通量贡献区分析[J]. 复旦学报(自然科学版), 2008, 47(3):374-379, 386. [GU Y J, GAO Y, GUO H Q, et al. Footprint analysis for carbon flux in the wetland ecosystem of Chongming Dongtan[J]. Journal of Fudan University (Natural Science), 2008, 47(3):374-379, 386.] [14] 张慧. 中亚热带人工林碳水通量贡献区的评价研究[D]. 南京:南京信息工程大学硕士学位论文, 2012. [ZHANG H. The study of flux footprint intypical subtropical monsoon man-planted forest[D]. Nanjing:Master Dissertation of Nanjing University of Information Science & Technology, 2012.] [15] 王江涛. 崇明东滩滨海围垦区芦苇湿地CO2通量特征[D]. 上海:华东师范大学硕士学位论文, 2015. [WANG J T. Characteristics of carbon dioxide flux in the coastal reclaimed reed wetland of Chongming Dongtan[D]. Shanghai:Master Dissertation of East China Normal University, 2015.] [16] VELASCO E, PERRUSQUIA R, JIMÉNEZ E, et al. Sources and sinks of carbon dioxide in a neighborhood of Mexico City[J]. Atmospheric Environment, 2014, 97:226-238. [17] KORDOWSKI K, KUTTLER W. Carbon dioxide fluxes over an urban park area[J]. Atmospheric Environment, 2010, 44(23):2722-2730. [18] KUMAR K M, NAGENDRA S M S. Characteristics of ground level CO2concentrations over contrasting land uses in a tropical urban environment[J]. Atmospheric Environment, 2015, 115:286-294. [19] KURPPA M, NORDBO A, HAAPANALA S, et al. Effect of seasonal variability and land use on particle number and CO2 exchange in Helsinki, Finland[J]. Urban Climate, 2015, 13:94-109. [20] NEFTEL A, SPIRIG C, AMMANN C. Application and test of a simple tool for operational footprint evaluations[J]. Environmental Pollution, 2008, 152(3):644-652. [21] 龚笑飞, 陈丽萍, 莫路锋. 基于FSAM模型的毛竹林碳通量贡献区研究[J]. 西南林业大学学报, 2015, 35(6):37-44. [GONG X F, CHEN L P, MO L F. Research of flux footprint of Anji bamboo forest ecosystems based on the FSAM model[J]. Journal of Southwest Forestry University, 2015, 35(6):37-44.] [22] 周琪, 李平衡, 王权, 等. 西北干旱区荒漠生态系统通量贡献区模型研究[J]. 中国沙漠, 2014, 34(1):98-107. [ZHOU Q, LI P H, WANG Q, et al. A footprint analysis on a desert ecosystem in West China[J]. Journal of Desert Research, 2014, 34(1):98-107.] [23] 汤洁, 韩源, 刘森, 等. 吉林西部不同土地利用方式下的生长季土壤CO2排放通量日变化及影响因素[J]. 生态环境学报, 2012, 21(1):33-37. [TANG J, HAN Y, LIU S, et al. Diurnal variation of soil CO2 fluxes and factors in different land use types during growing season in western Jilin province[J]. Ecology and Environment Sciences, 2012, 21(1):33-37.] [24] 王宇, 周广胜, 贾丙瑞, 等. 中国东北地区阔叶红松林与兴安落叶松林的碳通量特征及其影响因子比较[J]. 生态学报, 2010, 30(16):4376-4388. [WANG Y, ZHOU G S, JIA B R, et al. Comparisons of carbon flux and its controls between broad-leaved Korean pine forest and Dahurian larch forest in northeast China[J]. Acta Ecologica Sinica, 2010, 30(16):4376-4388.] [25] NEMITZ E, HARGREAVES K J, MCDONALD A G, et al. Micrometeorological measurements of the urban heat budget and CO2 emissions on a city scale[J]. Environmental Science Technology, 2002, 36(14):3139-3146. [26] 贾庆宇, 周广胜, 王宇, 等. 城市复杂下垫面供暖前后CO2通量特征分析[J]. 环境科学, 2010, 31(4):843-849. [JIA Q Y, ZHOU G S, WANG Y, et al. Characteristics of CO2 flux before and in the heating period at urban complex underlying surface area[J]. Environmental Science, 2010, 31(4):843-849.] [27] SCHMIDT A, WRZESINSKY T, KLEMM O. Gap filling and quality assessment of CO2 and water vapour fluxes above an urban area with radial basis function neural networks[J]. Boundary-Layer Meteorology, 2008, 126(3):389-413. [28] VOGT R, CHRISTEN A, ROTACH M W, et al. Temporal dynamics of CO2 fluxes and profiles over a Central European city[J]. Theoretical and Applied Climatology, 2006, 84(1/3):117-126. [29] VELASCO E, PRESSLEY S, ALLWINE E, et al. Measurements of CO2 fluxes from the Mexico City urban landscape[J]. Atmospheric Environment, 2005, 39(38):7433-7446. [30] GRIMMOND C S B, KING T S, CROPLEY F D, et al. Local-scale fluxes of carbon dioxide in urban environments:methodological challenges and results from Chicago[J]. Environmental Pollution, 2002, 116(1):S243-S254. |
[1] | 周峰, 吕慧华, 许有鹏. 城镇化平原河网区下垫面特征变化及洪涝影响研究[J]. 长江流域资源与环境, 2015, 24(12): 2094-2099. |
|