长江流域资源与环境 >> 2018, Vol. 27 >> Issue (12): 2651-2662.doi: 10.11870/cjlyzyyhj201812002

• 区域可持续发展 • 上一篇    下一篇

长江中游经济带交通区位条件变化与建设用地扩张时空耦合规律

曾源源1,胡守庚1,2*,瞿诗进1,2   

  1. (1. 中国地质大学(武汉)公共管理学院,湖北 武汉 430074;2. 国土资源部法律评价工程重点实验室,湖北 武汉 430074)

  • 出版日期:2018-12-20 发布日期:2018-12-29

Spatial-temporal Coupling of Traffic Location Change and Construction Land Expansion in the Middle of Yangtze River Economic Belt

ZENG Yuan-yuan1, HU Shou-geng1, 2*, QU Shi-jin1, 2   

  1. (1. School of Public Administration, China University of Geosciences, Wuhan 430074, China; 2. Key Laboratory of Legal Assessment Project,Ministry of Land and Resources, Wuhan 430074, China)
  • Online:2018-12-20 Published:2018-12-29

摘要:  揭示区域交通区位变化与建设用地扩张的时空差异特征,是探索建设用地扩张驱动力,提升区域建设用地管控成效,推进区域协同可持续发展的重要基础。基于长江中游地区1990~2015年遥感和交通数据,通过空间计量方法揭示区域交通区位和建设用地扩张的时空分异特征,并从时序和空间两个层面探索了二者之间的相关性。研究表明:(1)交通通达度呈快速增长过程,县域平均交通通达度从1990的0.76增长到2015年的1.14,平均年增长幅度为1.52%,其中1990~1995年增长速度最快,而2005~2010年增长较慢,且较高水平通达度区域呈由零星点状分布向沿长江及其支流的线性分布转变的态势。(2)1990~2015年研究区建设用地面积总增加量达7 851.24 km2,扩张强度变化趋势为先减后增,其高值区也表现出类似的由零星点状转变为沿长江及其支流分布的空间变化趋势。(3)区域建设用地扩张不仅与其自身交通区位有关,受其邻域交通区位的影响也较大。各时段(1990~1995年、1995~2000年、2000~2005年、2005~2010年、2010~2015年)扩张强度取对数后与交通通达度的Pearson相关系数分别为0.577、0.567、0.470、0.591、0.501,扩张强度与交通通达度的Moran’s I指数分别为0.235、0.278、0.251、0.298、0.278。(4)不同时段交通通达度与建设用地扩张强度的空间聚集特征存在相似性:省会城市及其近邻地区因其区位优势,呈高-高聚集状态,而丘陵山地区因其经济活跃程度较低,地形条件所限,呈现低-低聚集状态。明确区域交通区位变化和建设用地扩张时空耦合关系,对于新时代背景下区域融合发展战略规划具有重要指导意义。

Abstract: It is essential to reveal the spatial-temporal coupling relationship between the change of regional transportation location and the expansion of construction land for exploring the driving force for the expansion of construction land, enhancing the effectiveness of regional construction land management and promoting the sustainable development of the region. Here, this paper reveals the spatial-temporal differentiation characteristics of regional traffic location and construction land expansion with spatial econometrics methods and explores the correlation between the two from the time series and space based on the remote sensing and traffic data from 1990 to 2015 in the middle reaches of the Yangtze River. We found that traffic accessibility in study area increased rapidly from 1990 to 2015. The average traffic accessibility of the county increased from 0.76 in 1990 to 1.14 in 2015, with an average annual growth rate of 1.52%. The average annual growth rate was 1.52%, of which the growth rate was the fastest in 1990-1995 years, and the growth of 2005-2010 years was slower. And the spatial distribution of high level accessibility area is distributed from sporadic point to linear distribution along the Yangtze River and its tributaries. The total increase of construction land area in the study area was 7 851.24 km2 from 1990 to 2015, and the trend in expansion intensity decreased first and then increased. The high value area also showed a similar change from sporadic point to space along the Yangtze River and its tributaries. The expansion of regional construction land is not only related to its own traffic location, but also affected by its neighboring traffic location. The Pearson correlation coefficients of traffic accessibility and the logarithm of the expansion intensity are 0.577, 0.567, 0.470, 0.591 and 0.501 respectively, and the Moran’s I index is 0.235, 0.278, 0.251, 0.298, 0.278, respectively. There are similarities in the spatial aggregation characteristics of traffic accessibility and construction land expansion intensity in different periods: the provincial capital and its neighboring areas have a high-high aggregation state due to their location advantages, while hilly area shows low-oligomeric state due to its low economic activity and limited terrain conditions. It is vital for strategic planning of regional integration development in the new era to clarify the spatial-temporal coupling relationship between regional transportation location and construction land expansion.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王玲杰. 偏最小二乘回归法在非点源污染年负荷量估算中的应用[J]. 长江流域资源与环境, 2007, 16(6): 810 .
[2] 李春华,李 宁,史培军. 基于SOM模型的中国耕地压力分类研究[J]. 长江流域资源与环境, 2007, 16(3): 318 .
[3] 张 兵,金凤君,于 良,. 基于区域化过程的边缘地区发展模式——以南阳市为例[J]. 长江流域资源与环境, 2007, 16(6): 704 .
[4] 施建刚, 裘丽岚. 成都平原城市群的城市流分析[J]. 长江流域资源与环境, 2009, 18(9): 796 .
[5] 夏智宏, 周月华, 许红梅. 基于SWAT模型的汉江流域水资源对气候变化的响应[J]. 长江流域资源与环境, 2010, 19(2): 158 .
[6] 蒋洪强, 马向春, 杨玲玲. 基于GIOWA算子的大型水利水电工程项目环境管理成熟度评价研究[J]. 长江流域资源与环境, 2010, 19(z1): 172 .
[7] 王赞信, 卢英. 麻疯树种子油生命周期的经济、环境与能量效率[J]. 长江流域资源与环境, 2011, 20(1): 61 .
[8] 梁流涛|曲福田|冯淑怡. 经济发展与农业面源污染:分解模型与实证研究[J]. 长江流域资源与环境, 2013, 22(11): 1369 .
[9] 章茹|蒋元勇|万金保|戴年华|李述. 城镇化过程对鄱阳湖流域生态系统的影响[J]. 长江流域资源与环境, 2014, 23(03): 400 .
[10] 李为,朱挺兵,郭传波,张堂林,刘家寿,李钟杰. 肖四海不同渔业发展阶段的水环境特征分析[J]. 长江流域资源与环境, 2014, 23(08): 1090 .