长江流域资源与环境 >> 2020, Vol. 29 >> Issue (3): 547-556.doi: 10.11870/cjlyzyyhj202003002

• 区域可持续发展 • 上一篇    下一篇

中国城市住宅售租比时空分异格局及影响机制

尹上岗1,2,马志飞3,吴小影1,2,李在军4   

  1. (1.南京师范大学地理科学学院,江苏 南京 210023;2.江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023;3.重庆工商大学旅游与国土资源学院, 重庆 400067;4.扬州大学 苏中发展研究院,江苏 扬州 225009)

  • 出版日期:2020-03-20 发布日期:2020-03-20

Spatial-temporal Differentiation and Influence Mechanism of the Urban Housing Price-to-rent Ratio in China

YIN Shang-gang1,2, MA Zhi-fei3, WU Xiao-ying1,2, LI Zai-jun4   

  1. (1. School of Geography Science, Nanjing Normal University, Nanjing 210023, China;2. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; 3.College of Tourism and Land Resource,Chongqing Technology and Business Vniversity,Chongqing 400067, China;4. Research Institute of Central Jiangsu Development, Yangzhou University, Yangzhou 225009, China)
  • Online:2020-03-20 Published:2020-03-20

摘要: 摘  要:以2009~2017年中国336个地级以上城市为基本研究单元,利用空间趋势面和探索性空间回归技术(ESDA)对中国城市住宅售租比的空间分布进行模拟和估计,并利用地理探测器模型从城市的经济因素、人口因素、社会因素和预期因素4大方面探析售租比时空分异的影响机制。结果表明:中国城市住宅售租比整体呈波动式上升的态势,空间分布呈现出“东高西低”、“东热西冷”的阶梯状格局,且住宅价格、住宅租金和售租比均存在明显的空间正相关性和较强的区域集聚性。收入水平和工资水平是影响售租比最大的因素,住宅预期、人口吸引力、租赁户比重、家庭规模、经济预期等也是影响售租比的重要因素,经济因素、人口因素、预期因素和社会因素的解释力依次减弱,4大因素相互联系、相互作用,形成中国售租比的时空分异格局。

Abstract: Abstract:Based on the basic research units of 336 prefecture-level-and-above cities in China from 2009 to 2017,this article uses the spatial regression trend surface and the exploratory spatial data analysis(ESDA) to simulate and estimate the spatial distribution of urban housing price-to-rent ratio of China, and uses the geographical probe model to explore the influence mechanism of the price-to-rent ratio’s spatial-temporal variance from four main aspects: The city’s economic factors, population factors, social factors and expectational factors. The results showed that: the housing price-to-rent ratio in China is in a fluctuating upward trend. The spatial distribution shows the staircase pattern of “high in the east and low in the west” and “hot in the east and cold in the west”. Meanwhile, there exists an obvious spatial positive correlation and a strong regional agglomeration in housing price, rent and price-to-rent ratio. Income level and wage level are the most important factors affecting the price-to-rent ratio. Residential expectations, population attractiveness, proportion of tenants, family size, and economic expectations are also important factors affecting the price-to-rent ratio. The explanatory power of economic factors, population factors, expected factors and social factors is weakened in turn. The four factors are interrelated and interact to form the temporal and spatial distribution pattern of price-to-rent ratio in China.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘爱霞,刘正军,王 静. 基于PCA变换和神经元网络分类方法的中国森林制图研究[J]. 长江流域资源与环境, 2006, 15(1): 19 -24 .
[2] 王玉蓉,李嘉| 李克锋,芮建良. 雅砻江锦屏二级水电站减水河段生态需水量研究[J]. 长江流域资源与环境, 2007, 16(1): 81 -85 .
[3] 许有鹏,于瑞宏,马宗伟. 长江中下游洪水灾害成因及洪水特征模拟分析[J]. 长江流域资源与环境, 2005, 14(5): 638 -643 .
[4] 胡明秀, 胡 辉, 王立兵. 武汉市工业“三废”污染状况计量模型研究[J]. 长江流域资源与环境, 2005, 14(4): 470 -474 .
[5] 陈 进,黄 薇. 梯级水库对长江水沙过程影响初探[J]. 长江流域资源与环境, 2005, 14(6): 786 -791 .
[6] 梁 彬,邓振平,梁小平,朱明秋,关碧珠,周 密. 湘西大龙洞岩溶流域生态环境分析与治理对策[J]. 长江流域资源与环境, 2005, 14(6): 764 -769 .
[7] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .
[8] 马育军, 黄贤金, 肖思思, 王 舒. 基于DEA模型的区域生态环境建设绩效评价——以江苏省苏州市为例 [J]. 长江流域资源与环境, 2007, 16(6): 769 .
[9] 夏 敏,赵小敏,张佳宝,刘友兆,曾志强. 基于GIS的土地适宜性评价决策支持系统——以南京市江宁区淳化镇为例[J]. 长江流域资源与环境, 2006, 15(3): 325 -329 .
[10] 吴后建,王学雷,宁龙梅,芦云峰. 土地利用变化对生态系统服务价值的影响——以武汉市为例[J]. 长江流域资源与环境, 2006, 15(2): 185 -190 .