长江流域资源与环境 >> 2021, Vol. 30 >> Issue (9): 2217-2226.doi: 10.11870/cjlyzyyhj202109015

• 生态环境 • 上一篇    下一篇

东洞庭湖湿地生态水位阈值研究

王鸿翔, 朱永卫, 查胡飞, 郭文献*   

  1. (华北水利水电大学,河南 郑州 450045)
  • 出版日期:2021-09-20 发布日期:2021-09-27

Study on Ecological Water Level Threshold of East Dongting Lake Wetland

WANG Hong-xiang, ZHU Yong-wei, ZHA Hu-fei, GUO Wen-xian   

  1. (North China University of Water Resources and Electric Power, Zhengzhou 450045, China)
  • Online:2021-09-20 Published:2021-09-27

摘要: 水位是湖泊湿地水文情势和生态系统健康的关键指标,如何确定适宜生态水位阈值是确保湖泊湿地健康的关键。以东洞庭湖城陵矶站和鹿角站突变前水位过程(1959~1978年逐日水位资料)为基准期,采用RVA法、年内展布法和数理统计的方法建立了东洞庭湖适宜生态水位过程。结果表明:(1)RVA法计算逐月生态水位阈值的波动范围均值是2.18 m,而年内展布法计算逐月生态水位阈值的波动范围均值是5.12 m,水位波动较大,对于东洞庭湖适宜生态水位来说,RVA法计算生态水位的波动范围更有利于维持湿地植物群落健康和生物多样性;(2)受湖底高程影响,鹿角站的高低水位发生时间会比城陵矶站提前15 d左右,而高低水位的历时和波动范围以及动植物敏感期(3~6月)的平均水位变化速率并未有显著差别;(3)水位变异后(2003~2016年),东洞庭湖水位大部时间处于生态水位阈值内,只需要对不满足生态水位的消落期采取调整措施,鹿角站和城陵矶站年均水位差距减少0.46 m,洞庭湖的水动力系统减弱,给洞庭湖生态健康带来了消极的负面影响。研究可为东洞庭湖生态水位和三峡及上游电站联合调度提供依据。

Abstract: Water level is the key index of hydrological situation and ecosystem health of lake wetland. How to determine the appropriate ecological water level threshold is the key to ensure the health of lake wetland. In this paper, the suitable ecological water level process of East Dongting Lake was established by means of RVA method, dynamic calculation method and mathematical statistics, taking the pre-abrupt water level process of Chenglingji station and Lujiao Station (daily water level data from 1959 to 1978) as the reference period. Research results show that: (1) the RVA method to calculate monthly average range of ecological water level threshold is 2.18 m, and the dynamic calculation method for calculating the ecological water level threshold range from month to month average is 5.12 m, the water level fluctuation is bigger, for East Dongting lake is suitable for ecological water level, RVA method to calculate the range of ecological water level is more advantageous to maintain health and biodiversity of wetland plant communities. (2) Affected by the elevation of the lake bottom, the occurrence time of high and low water level in Lujiao Station is about 15 days earlier than that in Chenglingji Station. However, there is no significant difference between the duration and fluctuation range of high and low water level and the average change rate of high and low water level in the sensitive period of fish and plants (March-June). (3) After the variation of water level (2003-2016), the water level of East Dongting Lake was within the ecological water level threshold for most of the time, and only adjustment measures should be taken for the declining period that did not meet the ecological water level. The difference of the average annual water level between Lujiao Station and Chenglingji Station was reduced by 0.46 m, and the hydrodynamic system of Dongting Lake was weakened. The research can provide the basis for the ecological water level of East Dongting Lake and the joint operation of three Gorges and upstream power stations.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵璊璊, 冯 莉, 郭 松, 田慧慧. 景观格局影响下的南京市热舒适度动态变化[J]. 长江流域资源与环境, 2018, 27(08): 1712 .
[2] 杨佳, 葛馨, 吴起鑫. 贵阳市主城区空气质量指数时空分布特征[J]. 长江流域资源与环境, 2018, 27(08): 1827 .
[3] 代培, 阎明军, 周游, 周彦锋, 熊满晖, 卢剑达, 刘凯.  

太湖五里湖沿岸带浮游植物群落生态特征(2014~2015) [J]. 长江流域资源与环境, 2018, 27(10): 2348 -2357 .

[4] 谢五三, 吴 蓉, 丁小俊. 基于FloodArea模型的城市内涝灾害风险评估与预警[J]. 长江流域资源与环境, 2018, 27(12): 2848 -2855 .
[5] 刘晓阳 黄晓东 丁志伟. 长江经济带县域信息化水平的空间差异研究[J]. 长江流域资源与环境, , (): 0 .
[6] 刘 菊, 傅 斌, 张成虎, 胡治鹏, 王玉宽. 基于InVEST模型的岷江上游生态系统水源涵养量与价值评估[J]. 长江流域资源与环境, 2019, 28(03): 577 -585 .
[7] 吕 浩, 田辉伍, 申绍祎, 段辛斌, 刘绍平. 岷江下游产漂流性卵鱼类早期资源现状[J]. 长江流域资源与环境, 2019, 28(03): 586 -593 .
[8] 梁明强, 李俊云, 周菁俐, 张键, 陈朝军. 重庆市芙蓉洞空气环境变化特征与影响因素分析[J]. 长江流域资源与环境, 2019, 28(04): 962 -970 .
[9] 胡博亭, 柳江, 王文玲, 冯彦. 基于洪旱灾害的雅鲁藏布江流域水资源脆弱性时空差异分析[J]. 长江流域资源与环境, 2019, 28(05): 1092 -1101 .
[10] 胡乃娟, 陈倩, 朱利群. 长江中下游稻麦轮作系统生命周期环境影响评价——以江苏南京为例[J]. 长江流域资源与环境, 2019, 28(05): 1111 -1120 .