长江流域资源与环境 >> 2021, Vol. 30 >> Issue (10): 2311-2324.doi: 10.11870/cjlyzyyhj202110001

• 区域可持续发展 •    下一篇

中国区域创新能力测度与协同创新网络结构分析

王圣云1,2,王振翰2,姚行仁2   

  1. (1.南昌大学中国中部经济社会发展研究中心,江西 南昌 330047;2.南昌大学经济管理学院,江西 南昌 330031)
  • 出版日期:2021-10-20 发布日期:2021-11-05

Measurement of China’s Regional Innovation Capacity and Analysis of Collaborative Innovation Network Structure

WANG Sheng-yun 1,2,WANG Zhen-han 2,YAO Xing-ren 2   

  1. (1.Research Center of the Central Economic and Social Development, Nanchang University, Nanchang 330047,China;2.School of Economic&Management, Nanchang University, Nanchang 330031,China)
  • Online:2021-10-20 Published:2021-11-05

摘要: 选取1998~2017年全国31省市的面板数据,构建创新能力结构关系模型,测度中国各省域的创新能力,揭示省域创新能力耦合网络的时空演化,研究发现:(1)1998~2017年各省域的创新能力均有明显提升,但不同省域之间的创新能力仍有明显差距且呈逐渐扩大趋势。在四大区域中,东部地区的创新能力最强,东北地区的创新能力已被中部地区和西部地区反超,中部地区的创新能力高于西部地区;(2)在省域创新能力耦合网络演化过程中,耦合网络的密度与强度都有明显增强,极化特征明显,耦合网络空间范围向东部和中部地区集中,全国呈现出“东密西疏”的空间网络分布格局,省份间在开展协同创新的过程中出现了明显的小团体集聚现象;(3)各省域在协同创新中获益的差距不断扩大,省域协同创新获益格局在地理上呈现出集聚特征,空间上呈现出“东高西低”的特征。北京、天津、江苏、上海、浙江、广东等东部沿海省市成为我国协同创新获益较高水平的第一梯队,江苏-上海是我国省域间协同创新获益最多的一对省份。

Abstract: By using the panel data of 31 provinces and cities in the country from 1998 to 2017, constructing the relational model of ability structure, this paper measures the innovation capability of each province in China and reveals the spatiotemporal evolution of the coupling network of provincial innovation capability. The study finds that: ①From 1998 to 2017, the innovation capacity of each provincial region has been significantly improved, but the innovation capacity of different provinces still has a significant gap and the gap is gradually expanding. Among the four regions, the eastern region has the strongest innovation capacity, the northeast region has been overtaken by the central region and the western region, and the central region’s innovation capacity is higher than that of the western region. ②In the evolution of the coupling network of provincial innovation capability, the density and the intensity of the coupling network has been greatly enhanced, but the polarization distribution characteristic is obvious. The scale of the coupling network is more concentrated in the eastern and central regions. The whole country shows a spatial network distribution pattern of “Eastern Missiles”. In the process of collaborative innovation among provinces, the phenomenon of small groups has become obvious; ③The benefit gap of collaborative innovation among various provinces is continuously expanding, and the benefit pattern of provincial collaborative innovation presents agglomeration characteristic geographically and spatially presents “east high west low ” characteristic. Beijing, Tianjin, Jiangsu, Shanghai, Zhejiang, Guangdong and other eastern coastal provinces and cities have become the first echelon of higher levels of collaborative innovation in China. Jiangsu-Shanghai is the pair of provinces in China that have benefited most from collaborative innovation.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙 晨, 刘 敏. 再分析资料在三峡库区气候效应研究中的应用[J]. 长江流域资源与环境, 2018, 27(09): 1998 -2013 .
[2] 邓鹏鑫, 邴建平, 贾建伟, 王栋. 汉江流域1956~2016年汛期降水时空演变格局[J]. 长江流域资源与环境, 2018, 27(09): 2132 -2141 .
[3] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .
[4] 董捷 魏旭华 陈恩. 土地利用碳排放地域差异下减排责任分摊研究——以武汉城市圈为例[J]. 长江流域资源与环境, , (): 0 .
[5] 赵玉岩, 栾维新, 王 辉, 马 瑜.  

城市核心建成区对邻近新增建设用地影响研究——以长江三角洲为例 [J]. 长江流域资源与环境, 2018, 27(10): 2172 -2181 .

[6] 黄杰龙, 陈秋华, 幸绣程, 王立群.  

中国省域森林公园旅游产业竞争力的时空演化特征及影响因素 [J]. 长江流域资源与环境, 2018, 27(10): 2305 -2315 .

[7] 冯 畅, 毛德华, 周 慧, 曹艳敏, 胡光伟. 流域绿水管理博弈建模及应用分析[J]. 长江流域资源与环境, 2018, 27(11): 2505 -2517 .
[8] 周彦锋, 吕大伟, 葛 优, 王晨赫, 刘剑羽, 张 丽, 尤 洋, . 淀山湖河蚬翘嘴红鲌国家级水产种质资源保护区翘嘴鲌产卵场现状[J]. 长江流域资源与环境, 2018, 27(12): 2733 -2739 .
[9] 胡兴坤, 高 雷, 杨 浩, 刘绍平, 陈大庆, 段辛斌 . 长江中游黄石江段鱼类早期资源现状[J]. 长江流域资源与环境, 2019, 28(01): 60 -67 .
[10] 胡晓, 余英俊, 魏永才, 洪亮, 张永年, 石小涛, 吴睿. 基于过鱼效果评估的涵洞鱼道堰式挡板性能研究与分析[J]. 长江流域资源与环境, 2019, 28(01): 134 -143 .