长江流域资源与环境 >> 2022, Vol. 31 >> Issue (2): 472-481.doi: 10.11870/cjlyzyyhj202202020

• 农业发展 • 上一篇    下一篇

基于长时序CCI土壤湿度数据的长江流域农业干旱时空演变

田晴1,陆建忠1*,陈晓玲1,张玉芳2   

  1. (1.武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉 430079;2.武汉大学遥感信息工程学院,湖北 武汉 430079)

  • 出版日期:2022-02-20 发布日期:2022-03-21

Spatio-temporal Evolution of Agricultural Drought in the Yangtze River Basin Based on Long-term CCI Soil Moisture Data

TIAN Qing1, LU Jian-zhong1, CHEN Xiao-ling1, ZHANG Yu-fang2   

  1. (1.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 
    Wuhan 430079, China;2.School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)

  • Online:2022-02-20 Published:2022-03-21

摘要: 土壤湿度在水文循环和气候系统中起着至关重要的作用,对农业干旱监测和预测非常重要。选择ESA CCI主动、被动、主被动合成土壤湿度数据和站点实测土壤湿度数据,运用皮尔逊相关系数检验CCI产品的准确性;运用标准化土壤湿度指数方法划分农业干旱等级,运用小波分析、Mann-Kendall和森斜率趋势检验研究长江流域农业干旱的历史时空演变规律。结果表明:长江流域农业干旱面积呈先增加后减少的趋势,在季节尺度上以春旱和冬旱为主;农业干旱发生的周期为28、12、22、32 a;严重干旱中心具有向低纬度和东经度转移的趋势;金沙江流域南部、岷江沱江流域和嘉陵江流域北部、汉水流域、长江上游、乌江流域、洞庭湖流域西部具有明显干旱趋势,长江源头、洞庭湖流域东部、鄱阳湖流域、长江中游和下游、太湖流域具有明显变湿润趋势,其余地区保持相对稳定。从长时序土壤湿度角度出发,探索了历史上农业干旱的时空演变规律,为农业干旱精准监测和预警提供了新的监测方法。


Abstract: Soil moisture plays a vital role in the hydrological cycle and climate system. It is very important for agricultural drought monitoring and prediction. This paper selects ESA CCI soil moisture data from 1979 to 2019, and uses the Pearson correlation method to verify the correlation of CCI products with in-situ observation data. This paper uses standardized soil moisture index method to classify agricultural drought levels, uses wavelet analysis, Mann-Kendall and Sen slope trend test to study the historical spatio-temporal evolution of agricultural drought in the Yangtze River Basin. The results showed that the area of agricultural drought in the Yangtze River Basin increased first and then decreased. In season, drought is prone to occur in spring and winter. 28, 12, 22, and 32 years are the main periods of drought. The severe drought center had a downward trend at latitude and eastward trend at longitude. The southern part of Jinsha River Basin, the northern part of Min River, Tuo River and Jialing River Basin, the Han River Basin, the upper Yangtze River, the Wu River Basin, and the western part of Dongting Lake Basin have obvious drying trend. The source of the Yangtze River, the eastern part of Dongting Lake Basin, the Poyang Lake Basin, the middle and lower reaches of the Yangtze River, and the Tai Lake Basin have obvious wetting trend. The rest of the Yangtze River Basin remains stable. From the perspective of long-term soil moisture, this article explores the spatio-temporal evolution of agricultural drought in history, and provides a new monitoring method for accurate agricultural drought monitoring and early warning.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 安俞静, 刘静玉, 李 宁, 乔墩墩, 刘梦丽. 中原城市群铁路网络可达性及经济联系格局[J]. 长江流域资源与环境, 2018, 27(09): 1947 -1957 .
[2] 奚世军 安裕伦 李阳兵 蔡沛伶 李瑞 龙立美 陈啟英. 基于景观格局的喀斯特山区流域生态风险评估 ——以贵州省乌江流域为例[J]. 长江流域资源与环境, , (): 0 .
[3] 秦立 吴起鑫. 赤水河流域土地利用结构对氮素输出的影响[J]. 长江流域资源与环境, , (): 0 .
[4] 陈炳. 长三角城市群生态文明建设与城市化耦合协调发展研究[J]. 长江流域资源与环境, , (): 0 .
[5] 韦胜 徐建刚 马海涛. 长三角高铁网络结构特征及形成机制[J]. 长江流域资源与环境, , (): 0 .
[6] 陈万旭 李江风 冉端. 长江中游城市群土地利用转型和城镇化之间空间关系研究[J]. 长江流域资源与环境, , (): 0 .
[7] 赵 毅, 徐绪堪, 李晓娟. 基于变权灰色云模型的江苏省水环境系统脆弱性评价[J]. 长江流域资源与环境, 2018, 27(11): 2463 -2471 .
[8] 任娟, 王建力, 杨平恒, 詹兆君, . 亚高山旅游景区岩溶地下水水化学动态变化及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2548 -2557 .
[9] 袁凯华, 张 苗, 甘臣林, 陈银蓉, 朱庆莹, 杨慧琳. 基于碳减排目标的省域碳生态补偿研究[J]. 长江流域资源与环境, 2019, 28(01): 21 -29 .
[10] 孔锋, 方建, 孙劭, 王品, 吕丽莉, . 基于超阈值取样的中国不同重现期降雨强度空间分异特征及强降雨变化模态(1961~2016年)[J]. 长江流域资源与环境, 2019, 28(01): 144 -156 .