长江流域资源与环境 >> 2022, Vol. 31 >> Issue (10): 2134-2145.doi: 10.11870/cjlyzyyhj202210003

• 区域可持续发展 • 上一篇    下一篇

多维流视角下湖北省网络结构特征及其影响机制

幸丽君1,2,杜赛南1,2*,孙桂英3,陈  全2   

  1. (1. 湖北大学区域开发与环境响应湖北省重点实验室,湖北 武汉 430062;2. 湖北大学资源环境学院,湖北 武汉 430062;3. 湖北省城市规划设计研究院有限责任公司,湖北 武汉 430062)
  • 出版日期:2022-10-20 发布日期:2022-10-27

Analysis on Network Structure Characteristics and Its Influencing Factors in Hubei Province Based on the Perspective of Multi-dimensional Feature Flow

XING Li-jun1,DU Sai-nan1,2,SUN Gui-ying3,CHEN Quan2   

  1. (1. Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China; 2. College of Resources and Environment, Hubei University, Wuhan 430062, China; 3.Hubei Institute of Urban Planning and Design Limited Liability Company, Wuhan 430062, China)
  • Online:2022-10-20 Published:2022-10-27

摘要: 基于百度迁徙、百度指数、银行及物流企业等多元流数据,构建多维城市联系强度矩阵,从网络节点、层级及核心-边缘结构三方面综合测度多维流视角下的湖北省城市网络结构特征及其关联性,并选取企业发展、交通可达、产业结构、经济发展和社会服务五类影响因素构建回归分析模型,进一步探析多维网络结构的影响因素。结果表明:(1)不同要素作用下的城市网络中各节点层级分化明显,武汉均处于独立核心地位,天门、潜江、仙桃及神农架林区等均处于较低层级,且不同联系网络的整体联系密度为信息流>物流>资金流>综合流>人流;(2)资金网络和其他网络之间关联性均较强,其中与物流网络在核心边缘城市的数量和空间分布上具有较大共性,而信息网络和人流网络的关联度较小;(3)企业发展和产业结构是多维网络产生共性的主要原因;交通可达、经济发展和社会服务因素是多维网络产生差异性的主要原因,其中,经济发展因素的影响最显著,社会服务因素影响相对最弱。最后基于本研究结论,为湖北省域空间规划的重点方向提出了若干探讨。

Abstract: Based on the urban connection intensity matrix constructed by Baidu migration, Baidu Index, banks and logistics enterprises, the study measures the characteristics and correlation of urban network structure and its correlation characteristics under multi-dimensional flow in Hubei Province from the perspective of network node, network connection hierarchy and core-edge structure. Five influencing factors including enterprise development, transportation accessibility, industrial structure, economic development and social service are selected to construct regression analysis model to further explore the comprehensive factors affecting the multi-dimensional network structure of Hubei Province. The results show that: (1) Under the effect of different factors, the node levels of the urban network are obviously differentiated. Wuhan is in the independent core position, and Tianmen, Qianjiang, Xiantao and Shennongjia forest areas are in the lower level. Besides, the overall connection density of different connection networks is information flow>logistics>capital flow>comprehensive flow> people flow; (2)Capital network has strong correlation with other networks, and has great commonality with logistics network in the quantity and spatial distribution of core edge cities, while information network has little correlation with people network; (3) Enterprise development and industrial structure are the main reasons for the generality of multidimensional network. Transportation accessibility, economic development and social service factors are the main reasons for the difference of multi-dimensional network. Among them, economic development factors have the most significant influence, while social service factors have the weakest influence. Finally, the paper puts forward some discussions on the key directions of hubei provincial spatial planning based on the conclusion of this study.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .
[2] 马小亮, 刘桂民, 吴晓东, 徐海燕, 叶琳琳, 张晓兰. 三江源高寒草甸下溪流溶解性有机碳的季节性输移特征[J]. 长江流域资源与环境, 2018, 27(10): 2387 -2394 .
[3] 苏 芳, 郑亚萍, 阚立娜, 蔡 莎. 基于CVM调查法评估城市公共绿地服务价值 ——以西部省会城市为例[J]. 长江流域资源与环境, 2018, 27(11): 2434 -2442 .
[4] 刘冀, 孙周亮, 张特, 程雄, 董晓华, 谈新. 基于不同卫星降雨产品的澴水花园流域径流模拟比较研究[J]. 长江流域资源与环境, 2018, 27(11): 2558 -2567 .
[5] 朱立一, 何伟, 朱璧然, . 纳米二氧化硅和铅复合暴露对 斑马鱼幼鱼甲状腺内分泌系统的毒性影响[J]. 长江流域资源与环境, 2018, 27(11): 2588 -2596 .
[6] 谢五三, 吴 蓉, 丁小俊. 基于FloodArea模型的城市内涝灾害风险评估与预警[J]. 长江流域资源与环境, 2018, 27(12): 2848 -2855 .
[7] 孔锋. 基于不同等级降雨视角透视气候工程对中国降雨结构的影响[J]. 长江流域资源与环境, , (): 0 .
[8] 胡兴坤, 高 雷, 杨 浩, 刘绍平, 陈大庆, 段辛斌 . 长江中游黄石江段鱼类早期资源现状[J]. 长江流域资源与环境, 2019, 28(01): 60 -67 .
[9] 胡晓, 余英俊, 魏永才, 洪亮, 张永年, 石小涛, 吴睿. 基于过鱼效果评估的涵洞鱼道堰式挡板性能研究与分析[J]. 长江流域资源与环境, 2019, 28(01): 134 -143 .
[10] 秦立, 付宇文, 吴起鑫, 安艳玲, 刘瑞禄, 吕婕梅, 吴振宇. 赤水河流域土地利用结构对氮素输出的影响[J]. 长江流域资源与环境, 2019, 28(01): 175 -183 .