长江流域资源与环境 >> 2023, Vol. 32 >> Issue (2): 365-373.doi: 10.11870/cjlyzyyhj202302012

• 生态环境 • 上一篇    下一篇

黄盖湖水体CDOM分布特征及来源分析

郭晓蕾1,2,孟凡生1,梁朱明1,张家胜1,薛浩1*,张铃松1
  

  1. (1. 中国环境科学研究院,北京 10012;2. 咸宁市生态环境局,湖北 咸宁 437000)
  • 出版日期:2023-02-20 发布日期:2023-03-09

Distribution Characteristics and Source Analysis of Chromophoric Dissolved Organic Matter(CDOM) in Huanggai Lake

GUO Xiao-lei1,2, MENG Fan-sheng1, LIANG Zhu-ming1, ZHANG Jia-sheng1,  XUE Hao1, ZHANG Ling-song1   

  1. (1. Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 2. Xianning Municipal Bureau of Ecology and Environment, Xianning 437000, China)
  • Online:2023-02-20 Published:2023-03-09

摘要: 有色可溶性有机物(CDOM)是水生态系统的重要组成部分,系统、全面地了解CDOM动态对水生态系统管理至关重要。基于2021年秋季黄盖湖及入湖河流24个采样点位的水质数据,运用三维荧光光谱(EEMs)结合平行因子分析(PARAFAC)技术分析了黄盖湖水体CDOM组成特征及潜在来源。结果表明:黄盖湖水体中CDOM主要由3种荧光组分组成,分别为类腐殖质荧光组分C1(240,310/390)、类腐殖质荧光组分C2(265,350/460)和蛋白质荧光组分C3(220,280/320),3种组分占总荧光强度比例的平均值分别为39.58%、29.34%和31.08%。荧光指数(FI)、自生源指数(BIX)和腐殖化指数(HIX)结果表明,不同湖区间腐殖度差异性显著(ANOVA,p<0.05),腐殖度大小具体表现为西部湖区>中部湖区>东部湖区。相关性分析表明,C1与C2显著正相关(R=0.55,P<0.01),黄盖湖水体中C1类腐殖质组分可能来源于水中微生物对C2类腐殖质组分的转化或藻类活动。黄盖湖水体CDOM以新近自生源为主,受人类活动影响明显,主要来源可能为流域内生活污水、使用家禽粪便的农田渗滤液以及微生物对残留浮游植物和陆源腐殖质组分的生物降解。

Abstract: Chromophoric dissolved organic matter (CDOM) is an important part of aquatic ecosystem, systematic and comprehensive understanding of CDOM dynamics is critically important for aquatic ecosystem management. In this study, the data of water samples and water quality parameters from 24 sampling sites of Huanggai Lake and inflowing rivers in 4 batches were collected from October to November 2021. Composition characteristics and sources of CDOM in the water of Huanggai Lake were analyzed by three-dimensional fluorescence excitation-emission matrix spectra combined with parallel factor analysis. The results indicated that three fluorescence components were identified by PARAFAC, including two humic-like component and one protein-like component, named C1 (240,310/390)、C2 (265, 350/460) and C3 (220, 280/320). The contribution rates to the total fluorescence intensity of C1, C2 and C3 were 39.58%, 29.34% and 31.08%, respectively. The analysis of the spectral characteristic parameters of fluorescence index (FI), biological index (BIX) and humification index (HIX) showed that there were significant differences in humification degree among different lakes (ANOVA, p<0.05), and the western lake area > the central lake area > the eastern lake area. Correlation analysis showed that C1 was significantly positively correlated with C2 (R= 0.55, P<0.01), C1 in Huanggai Lake was probably derived from the transformation of C2 by microorganisms or the activity of algae. The CDOM in the Huanggai Lake was mainly composed of recent autochthonous components, which were obviously affected by human activities. The main sources may include domestic sewage and farmland leachate using poultry manure in the watershed, microbial biodegradation of residual phytoplankton and terrestrial humic components.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈炳. 长三角城市群生态文明建设与城市化耦合协调发展研究[J]. 长江流域资源与环境, , (): 0 .
[2] 韦胜 徐建刚 马海涛. 长三角高铁网络结构特征及形成机制[J]. 长江流域资源与环境, , (): 0 .
[3] 陈万旭 李江风 冉端. 长江中游城市群土地利用转型和城镇化之间空间关系研究[J]. 长江流域资源与环境, , (): 0 .
[4] 张英浩, 陈江龙, 程 钰. 环境规制对中国区域绿色经济效率的影响机理研究——基于超效率模型和空间面板计量模型实证分析[J]. 长江流域资源与环境, 2018, 27(11): 2407 -2418 .
[5] 赵 毅, 徐绪堪, 李晓娟. 基于变权灰色云模型的江苏省水环境系统脆弱性评价[J]. 长江流域资源与环境, 2018, 27(11): 2463 -2471 .
[6] 任娟, 王建力, 杨平恒, 詹兆君, . 亚高山旅游景区岩溶地下水水化学动态变化及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2548 -2557 .
[7] 刘金科, 韩贵琳, 阳昆桦, 柳满. 九龙江流域河水溶解态碳的时空变化[J]. 长江流域资源与环境, 2018, 27(11): 2578 -2587 .
[8] 孔锋, 方建, 孙劭, 王品, 吕丽莉, . 基于超阈值取样的中国不同重现期降雨强度空间分异特征及强降雨变化模态(1961~2016年)[J]. 长江流域资源与环境, 2019, 28(01): 144 -156 .
[9] 魏建瑛, 徐建英, 樊斐斐. 卧龙自然保护区植被覆盖度变化及其对地形因子的响应[J]. 长江流域资源与环境, 2019, 28(02): 440 -449 .
[10] 王学婷, 张俊飚, 何可, 童庆蒙, 刘勇, . 农村居民生活垃圾合作治理参与行为研究:基于心理感知和环境干预的分析[J]. 长江流域资源与环境, 2019, 28(02): 459 -468 .