长江流域资源与环境 >> 2023, Vol. 32 >> Issue (5): 985-994.doi: 10.11870/cjlyzyyhj202305009

• 生态环境 • 上一篇    下一篇

平原河网区湖泊湖荡群沉积相重金属污染特征及来源解析

范雯霆1,陈诚1,2,姚斯洋1,3,崔桢1*,何梦男1,4,林妙丽1,王智源1,陈求稳1
  

  1. (1. 南京水利科学研究院生态环境研究所,江苏 南京 210029;2. 河海大学水利水电学院,江苏 南京 210098;3. 武汉大学水利水电学院,湖北 武汉 430000;4. 四川大学水利水电学院,四川 成都 610000)
  • 出版日期:2023-05-20 发布日期:2023-05-19

Pollution Characteristics and Source Analysis of Heavy Metals in  Sedimentary Phase of Lakes in Plain River Network Area

FAN Wen-ting1, CHEN Cheng1,2, YAO Si-yang1,3, CUI Zhen1, HE Meng-nan1,4,  LIN Miao-li1, WANG Zhi-yuan1, CHEN Qiu-wen1   

  1. (1.Eco-environmental Research Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China;
    2. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China;
    3. School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430000, China;
    4. College of Water Resources & Hydropower, Sichuan University, Chengdu 610000, China)

  • Online:2023-05-20 Published:2023-05-19

摘要: 里下河腹部地区是典型的平原河网区与水产养殖基地,湖泊湖荡多用于围圩开发,受水系交错、水流缓慢的影响,重金属污染一旦进入水体极易发生滞留,引发一系列水环境问题,进而危害食品安全。通过地累积指数法及Hakanson潜在生态危害指数法,对里下河地区28个典型湖泊湖荡沉积相重金属污染风险进行评价;基于重金属污染与当地工厂空间分布特征,结合主成分分析法,半定性、半定量地分析重金属污染来源,并通过相关性分析讨论工业排放与水产养殖对重金属含量的影响。结果表明:该区域沉积相Hg、Zn和Cd元素构成污染,含量分别是背景值的5.6、1.9和1.4倍,重金属综合潜在生态风险指数为152.4~599.4。沉积相Hg与其余重金属元素来源均不相同,历史上火电生产可能对Hg含量产生影响,湖泊湖荡与化工厂距离越近,沉积相Hg含量越高(r=0.42);水体中有机质易与沉积相Hg结合,故有机碳含量越高,沉积相Hg含量越高(r=0.54)。湖泊湖荡越靠近合金、电镀等金属材料加工行业,沉积相Zn(r=0.68)和Cd(r=0.59)的含量越高;且由于围圩养殖引起的湖泊湖荡水流不畅通,易导致Zn和Cd在沉积物中累积。以上研究结论可为平原河网地区重金属污染治理与食品安全保障提供科学依据。

Abstract: The Lixia River hinterland is a typical aquaculture base in plain river network area. Lakes in this area are mostly developed for polders. Affected by complex water systems and slow flow, heavy metal is easy to be detained once it enters into the aquatic ecosystem, leading to a series of water environmental problems and food safety danger. Geoaccumulation index and Hakanson potential ecological risk index were used to evaluate heavy metal pollution in sediment phase of 28 typical lakes in the Lixia River hinterland. The sources of heavy metal pollution were analyzed partly qualitatively and partly quantitatively based on principal component analysis. Correlation analysis was conducted to find out the influences of industry discharge and polder aquaculture on heavy metals concentration. The results showed that the Hg, Zn and Cd in sedimentary phase were the major pollution elements with the concentrations 5.6, 1.9 and 1.4 times of the background values, respectively. The comprehensive potential ecological risk index of heavy metals ranged from 152.4 to 599.4. The source of Hg in sediment phase is different from the other 7 elements, perhaps affected by historical thermal power production. The closer the distance between lake and chemical plants, the higher concentration of Hg in sedimentary phase (r=0.42). Organic matter is easy to combine with Hg in sediments. The higher concentration of TOC, the higher concentration of Hg in sedimentary phase (r=0.54). The closer the lakes to the metal processing industry (such as alloy factory, electroplating factory), the higher concentration of Zn (r=0.68) and Cd (r=0.59) in sedimentary phase. Zn and Cd can easily accumulate in sediments due to the slow and uncontinuous water flow caused by the polder aquaculture. The above research conclusions can provide scientific basis for heavy metal pollution control and food safety protection in plain river network area.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[2] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[3] 奚世军 安裕伦 李阳兵 蔡沛伶 李瑞 龙立美 陈啟英. 基于景观格局的喀斯特山区流域生态风险评估 ——以贵州省乌江流域为例[J]. 长江流域资源与环境, , (): 0 .
[4] 秦立 吴起鑫. 赤水河流域土地利用结构对氮素输出的影响[J]. 长江流域资源与环境, , (): 0 .
[5] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[6] 袁凯华, 张 苗, 甘臣林, 陈银蓉, 朱庆莹, 杨慧琳. 基于碳减排目标的省域碳生态补偿研究[J]. 长江流域资源与环境, 2019, 28(01): 21 -29 .
[7] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[8] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .
[9] 柯杭, 王小军, 尹义星, 罗志文, . 衡水市1961~2015年极端降水和干旱的时空变化特征[J]. 长江流域资源与环境, 2019, 28(04): 971 -980 .
[10] 钟业喜, 郭卫东, 毛炜圣, 王晓静, 冯兴华. 闽新轴带城市铁路网络及可达性演变研究[J]. 长江流域资源与环境, 2019, 28(05): 1015 -1024 .