长江流域资源与环境 >> 2023, Vol. 32 >> Issue (5): 995-1004.doi: 10.11870/cjlyzyyhj202305010

• 生态环境 • 上一篇    下一篇

上海典型河湖水系蓝绿空间指标体系构建及融合度评价

焦香香1,张饮江1,2#,刘小梅3,鲁  仙1,赵志淼1*   

  1. (1.上海海洋大学海洋生态与环境学院,上海 201306; 2.上海河湖生物链构建及资源化利用工程技术研究中心,上海 201306; 3.上海市水利工程设计研究院有限公司,上海 201306)
  • 出版日期:2023-05-20 发布日期:2023-05-19

Construction and Integration Evaluation of Blue-green Space Index System of Typical Rivers and Lakes in Shanghai

JIAO Xiang-xiang1, ZHANG Yin-jiang1,2, LIU Xiao-mei3, LU Xian1,ZHAO Zhi-miao1   

  1. (1. College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; 2. Shanghai Engineering Technology Research Center of River and Lake Biological Chain Construction and Resource Utilization, Shanghai 201306,China; 3. Shanghai Water Conservancy Engineering Design and Research Institute Co., Ltd., Shanghai 201306,China)
  • Online:2023-05-20 Published:2023-05-19

摘要: 城市规划发展中常面临着蓝绿分治,水岸分建的问题,“蓝绿空间”作为城市景观生态的重要组成部分,与人居环境质量紧密相关。基于蓝绿空间的融合特性,从水体、生物、景观生态3个方面遴选并构建蓝绿空间融合度指标评价体系,通过专家咨询结合层次分析法确定了5个准则层及12个指标层的指标权重,并应用层次分析法对上海典型河湖水系蓝绿空间构建的融合度进行评价。结果表明:(1)调查区域河道水系蓝绿空间融合度平均得分为70.575,人工湖区为65.774。8个河道样点和8个湖区样点中,达到高度融合等级的样点数分别是4和6。河道水系比湖区周围蓝绿空间构建更健康,生态系统更完整,生态服务功能更完善。(2)河道水系蓝绿空间融合度主要受水文形态特征(0.325)和河岸带情况(0.438)的影响,人工湖区主要受水质(0.480)和水文形态特征(0.454)的影响。(3)所选河湖水系蓝绿空间融合度差异主要体现在护岸生态性和绿色可达性两个指标上。通过蓝绿空间融合度的评价,可分析出蓝绿一体化建设中存在的问题,有望为城市蓝绿空间的规划设计与低碳建设提供参考,为城市生态系统的修复和管理提供理论依据。

Abstract: The problem of separate governance of blue and green and construction of waterfronts are often faced when is concerned with urban planning and development. As an important part of urban landscape ecology, “blue-green space” has a great impact on the quality of human settlements. Based on the integration characteristics of blue-green space, this research has selected and constructed the blue-green space integration index evaluation system from three aspects: water body, biology and landscape ecology, and 5 criterion layers, 12 index layers and index weights were determined through expert consultation and the analytic hierarchy process (AHP). The integration degree of the blue-green space construction of typical rivers and lakes were evaluated by using AHP in Shanghai. The results showed that: (1) The average score of blue-green space fusion of the river system in the selected survey area was 70.575, and the artificial lake area was 65.774. Among the selected 8 river sample points and 8 lake sample points, the number of sample points has reached a high level of fusion was sample 4 and 6, respectively. The river system was healthier than the blue-green space around the lake area, the ecosystem was more complete, and the ecological service was more functional. (2) The blue-green spatial integration degree of the river system was mainly affected by the hydrological morphological characteristics (0.325) and the riparian zone (0.438), and the lake area was mainly affected by the water quality (0.480) and the hydrological morphological characteristics (0.454). (3) The differences in the spatial integration of blue and green in the selected rivers and lakes were mainly reflected in the two indicators of bank protection ecology and green accessibility. By evaluating the degree of integration of blue-green space, the problems existing in the construction of blue-green integration could be analyzed, which is expected to provide a reference for the planning and designing of urban blue-green space, and to give a theoretical basis for the restoration and management of urban ecosystems.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李建豹, 黄贤金, 孟 浩, 周 艳, 徐国良, 吴常艳. “十二五”时期中国碳排放强度累积目标完成率分析[J]. 长江流域资源与环境, 2018, 27(08): 1655 .
[2] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .
[3] 李嘉译, 匡鸿海, 谭 超, 王佩佩. 长江经济带城市扩张的时空特征与生态响应[J]. 长江流域资源与环境, 2018, 27(10): 2153 -2161 .
[4] 唐子珺, 陈龙, 覃军, 郑翔. 武汉市一次污染过程的局地流场和边界层结构的数值模拟[J]. 长江流域资源与环境, 2018, 27(11): 2540 -2547 .
[5] 王东香, 张一鸣, 王锐诚, 赵炳炎, 张志麒, 黄咸雨, . 神农架大九湖泥炭地孔隙水溶解有机碳特征及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2568 -2577 .
[6] 王海力, 韩光中, 谢贤健. 基于DEA模型的西南地区耕地利用效率时空格局演变及影响因素分析[J]. 长江流域资源与环境, 2018, 27(12): 2784 -2795 .
[7] 汪聪聪, 王益澄, 马仁锋, 王静敏. 经济集聚对雾霾污染影响的空间计量研究——以长三角洲地区为例[J]. 长江流域资源与环境, 2019, 28(01): 1 -11 .
[8] 赵树成, 张展羽, 夏继红, 杨洁, 盛丽婷, 唐丹, 陈晓安, . 鄱阳湖滨岸土壤磷素吸附特征研究[J]. 长江流域资源与环境, 2019, 28(01): 166 -174 .
[9] 阮甜, 查芊郁, 杨茹, 高超. 全球升温1.5℃和2.0℃对长江寸滩站以上流域径流的影响[J]. 长江流域资源与环境, 2019, 28(02): 407 -415 .
[10] 邵祎婷, 何毅, 穆兴民, 高鹏, 赵广举, 孙文义, . 秦巴山区降雨侵蚀力时空变化特征[J]. 长江流域资源与环境, 2019, 28(02): 416 -425 .