长江流域资源与环境 >> 2023, Vol. 32 >> Issue (6): 1267-1280.doi: 10.11870/cjlyzyyhj202306014

• 生态环境 • 上一篇    下一篇

南漪湖沉积物中重金属分布及其潜在生态风险评价

李国莲,李肖,张玉,李海斌,谢发之*,舒莹,李卫华
  

  1. (安徽建筑大学环境污染控制与废弃物资源化利用安徽省重点实验室,安徽 合肥 230601)
  • 出版日期:2023-06-20 发布日期:2023-06-21

Distribution of Heavy Metals in Sediments of Nanyi Lake and Its Potential Ecological Risk Assessment

LI Guo-lian, LI Xiao, ZHANG Yu, LI Hai-bin, XIE Fa-zhi, SHU Ying, LI Wei-hua   

  1. (Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, 
    Anhui Jianzhu University, Hefei 230601, China)
  • Online:2023-06-20 Published:2023-06-21

摘要: 近年来随着长江流域经济的快速发展,长江下游南岸南漪湖的水质恶化受到当地政府高度重视。为了解南漪湖水体重金属的污染状况,研究采集全湖区表层沉积物中样品39个和主要出入湖支流表层水样6个,分析了南漪湖水体中重金属As、Cr、Cu、Mn、Ni、Pb、Zn含量和赋存形态以及沉积物中TOC、TN含量,评价了沉积物中重金属的污染程度及生态风险,并利用主成分分析和相关性分析对南漪湖污染来源进行解析。结果表明:间隙水中Pb平均浓度值超过美国优先污染物国家推荐水质基准的连续浓度(CCC);沉积物中As、Cr、Cu、Mn、Ni、Pb和Zn的平均含量高于背景值倍数为Pb(3.36)>Mn(2.74)>Zn(2.51)>As(1.8)>Cu(1.4)>Ni(1.34)>Cr(1.13)。沉积物中重金属As、Cr、Ni和Pb以残渣态为主,Zn在东湖区非残渣态占比54%,Mn在东湖区铁锰氧化物结合态占比达37.4%,Cu在西湖区有机物及硫化物结合态占比为26.7%。重金属潜在生态风险评价法表明Pb在13位点潜在生态风险等级为中等;重金属分配系数(lgKd)平均值及排序为Cr(4.80)>Zn(4.50)>Cu(4.43)>Pb(4.37)>Ni(4.31)>As(4.27)>Mn(2.73)。主成分分析、相关性分析和空间分布表明南漪湖水体污染主要来源于入湖河流汇集的工业废水、湖区水产养殖和水生生物降解以及周边农业和居民生活的面源输入。基于全湖区Pb生态风险较高,后续应持续关注重金属Pb对南漪湖水环境和生态系统的影响。


Abstract: In recent years, with the rapid economic development of the Yangtze River Basin, the local government has attached great importance to the deterioration of the water quality of Nanyi Lake, the lake of the South Bank of the lower reaches of the Yangtze River. In this study, 39 samples were collected from surface sediments of the whole lake area and 6 surface water samples from the main inlet and outlet tributaries, and the contents and distribution patterns of heavy metals As, Cr, Cu, Mn, Ni, Pb, Zn and the contents of TOC and TN in the sediments of Nanyi Lake were analyzed.The pollution degree and ecological risk of heavy metals in sediments were evaluated, and the pollution sources of Nanyi Lake were analyzed by principal component analysis and correlation analysis.The results showed that the average concentration of Pb in interstitial water exceeded the Criteria Continuous Concentration (CCC) of the National Recommended Water Quality Criteria.The average contents of As, Cr, Cu, Mn, Ni, Pb and Zn in sediments were higher than the river background value in the Jianghuai River Basin of Anhui Province, and the multiples exceeding the background value were Pb (3.36)>Mn (2.74)>Zn (2.51)>As (1.80)>Cu (1.40)>Ni (1.34)>Cr (1.13). Fractions of heavy metals analysis showed that As, Cr, Ni and Pb existed mainly in residual fractions (F4), while Zn was dominated by the non-residual fraction ( F1 + F2 + F3) with a mass fraction of 54%, and the reducible fraction (F2) of Mn was 37.4% in East Lake, the sulfide and organic matter bound state (F3) of Cu in the West Lake accounted for 26.7%. The potential ecological risk assessment method of heavy metals showed that Pb was a medium-risk in 13 sampling site. The average value and order of heavy metal partition coefficient (lgKd) in sediments were Cr (4.80)>Zn(4.50)>Cu(4.43)>Pb(4.37)>Ni(4.31)>As(4.27)>Mn(2.73). The principal component analysis and correlation analysis and spatial distribution showed that the water pollution of Nanyi Lake mainly came from the industrial wastewater collected by the rivers entering the lake, aquaculture and aquatic biodegradation in the lake, as well as the non-point source input from the surrounding agriculture and residents' lives. Based on the high ecological risk of Pb in the whole lake area, we should continue to pay attention to the impact of heavy metal Pb on the water environment and ecosystem of Nanyi Lake.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李建豹, 黄贤金, 孟 浩, 周 艳, 徐国良, 吴常艳. “十二五”时期中国碳排放强度累积目标完成率分析[J]. 长江流域资源与环境, 2018, 27(08): 1655 .
[2] 吴殿鸣, 邵大伟. 基于最佳尺度的城市扩张特征研究——以苏州中心城区为例[J]. 长江流域资源与环境, 2018, 27(09): 1937 -1946 .
[3] 熊鸿斌, 周凌燕. 基于PSR-灰靶模型的巢湖环湖防洪治理工程生态环境影响评价研究[J]. 长江流域资源与环境, 2018, 27(09): 1977 -1987 .
[4] 阮甜 查芊郁 杨茹 高超. 全球升温1.5℃和2.0℃对长江寸滩站以上流域径流的影响[J]. 长江流域资源与环境, , (): 0 .
[5] 沈雪, 张露, 张俊飚, 骆兰翎. 稻农低碳生产行为影响因素与引导策略——基于人际行为改进理论的多组比较分析[J]. 长江流域资源与环境, 2018, 27(09): 2042 -2052 .
[6] 马坤, 唐晓岚, 刘思源, 王奕文, 任宇杰, 刘小涵. 长江流域国家级保护地空间分布特征及其国家公园廊道空间策略研究[J]. 长江流域资源与环境, 2018, 27(09): 2053 -2069 .
[7] 李嘉译, 匡鸿海, 谭 超, 王佩佩. 长江经济带城市扩张的时空特征与生态响应[J]. 长江流域资源与环境, 2018, 27(10): 2153 -2161 .
[8] 唐子珺, 陈龙, 覃军, 郑翔. 武汉市一次污染过程的局地流场和边界层结构的数值模拟[J]. 长江流域资源与环境, 2018, 27(11): 2540 -2547 .
[9] 王东香, 张一鸣, 王锐诚, 赵炳炎, 张志麒, 黄咸雨, . 神农架大九湖泥炭地孔隙水溶解有机碳特征及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2568 -2577 .
[10] 王海力, 韩光中, 谢贤健. 基于DEA模型的西南地区耕地利用效率时空格局演变及影响因素分析[J]. 长江流域资源与环境, 2018, 27(12): 2784 -2795 .