长江流域资源与环境 >> 2023, Vol. 32 >> Issue (8): 1677-1685.doi: 10.11870/cjlyzyyhj202308011

• 生态环境 • 上一篇    下一篇

长三角城市群PM2.5时空演化及其来源研究

王建,许君利*   

  1. (盐城师范学院苏北农业农村现代化研究院,江苏 盐城 224007)
  • 出版日期:2023-08-20 发布日期:2023-08-23

Spatiotemporal Variation of PM2.5 and Its Sources in the Yangtze River Delta Urban Agglomeration

WANG Jian, XU Jun-li   

  1. (North Jiangsu Institute of Agricultural and Rural Modernization, Yancheng Teachers University, Yancheng 224007, China)
  • Online:2023-08-20 Published:2023-08-23

摘要:  长三角城市群人口密度高,经济与科技发达,但庞大的能源耗费量使得区域大气环境承载力面临巨大压力。利用2015年1月~2022年5月近地层202个站点空气质量数据分析PM2.5浓度时空分布特征与演变趋势,借助Hysplit模型确定污染物输送路线和潜在贡献区,基于此,探讨风和地形要素对污染物富集与扩散的作用。结果表明:(1)长三角城市群PM2.5平均浓度为38.26 μg/m3,空间上具有西北高东南低,内陆高沿海低的特点。年均值超标(空气质量二级标准)站点数占26.24%和日均值存在超标的站点数比例高达92.08%,主要发生于冬季,说明区域空气质量改善仍面临严峻挑战;(2)生态优先的经济发展背景下,PM2.5浓度年均值整体以4.07 μg/(m3·a)的速率呈显著的下降趋势,尤以合肥—滁州为中心和扬州—泰州—无锡—苏州—余杭(杭州)为主线的降幅最为显著,尤其是冬季降率高达6.10 μg/(m3·a),间接说明长三角主体应对环境污染的决心和力度;(3)长三角城市群PM2.5浓度未达标天数占比对风速变化的响应非常值得关注,表现在风速大于4 m/s时,强劲的风可输送外源污染物至研究区,使其空气质量恶化,未达标(一级标准)天数占比随风速增加而升高;(4)冬季长三角城市群PM2.5显著地受北向风输送环黄海区域和邯郸—济宁—枣庄—淮安西南部—滁州沿线人类排放的污染物影响。为此,建议长三角城市群依托经济与科技优势进行跨区域生态补偿,降低潜在贡献源区的污染物排放量和强度,提升长三角城市群的生态宜居性。

Abstract: The Yangtze River Delta urban agglomeration is a densely populated region with a highly developed economy and advanced technology. However, the high energy consumption in this region has led to significant environmental challenges. Spatiotemporal distribution of PM2.5 concentration and its evolution trend were analyzed with the air quality data of 202 stations in the near surface layer from January 2015 to May 2022. The transport routes and potential contributing areas of the pollutants were determined with the help of the Hysplit model. Based on the modelling results, the effects of wind and topographic changes on pollutant enrichment and diffusion were discussed. The results showed that: (1)The average concentration of PM2.5 in the Yangtze River Delta urban agglomeration was 38.26 μg/m3, which was slightly higher than the air quality standard in China. However, among the studied 202 stations, the number of sites with annual average values exceeding the standard accounted for 26.24%, and the number of sites with daily average values exceeding the standard accounted for as high as 92.08%, mainly occurred in winter. This implied that the air quality in this region still faced severe challenges; (2)Under the background of economic development with ecological priority, the annual average concentration of PM2.5 in the region showed a significant downward trend at a rate of 4.07 μg/(m3·a), for the studied period. The decrease was the most significant around the center of Hefei-Chuzhou and the line of Yangzhou-Taizhou-Wuxi-Suzhou-Yuhang (Hangzhou), which indirectly indicated the policy strength in action in the main body of the Yangtze River Delta, in an attempt to deal with the environmental pollution. (3)The correlation of PM2.5 concentration with the wind speed was worthy of attention in the Yangtze River Delta urban agglomeration. When the wind speed was greater than 4 m/s, more pollutants could be transported into the study area, worsening air quality. The proportion of days with PM2.5 concentration failing to meet the standard (Level 1 standard) increased with the increase of wind speed. (4)In winter, the strong northerly winds transported pollutants mainly originated from human emissions in the area around the Yellow Sea and along the lines of Handan-Jining-Zaozhuang-Southwest Huaian-Chuzhou, and consequently affected the PM2.5 concentration. Therefore, it was suggested that the Yangtze River Delta urban agglomeration carry out cross-regional ecological compensation, relying on economic and technological advantages to limit or reduce the discharge of pollutants from external sources, and to improve the livability of the Yangtze River Delta urban agglomeration.


No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 安俞静, 刘静玉, 李 宁, 乔墩墩, 刘梦丽. 中原城市群铁路网络可达性及经济联系格局[J]. 长江流域资源与环境, 2018, 27(09): 1947 -1957 .
[2] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .
[3] 陈炳. 长三角城市群生态文明建设与城市化耦合协调发展研究[J]. 长江流域资源与环境, , (): 0 .
[4] 韦胜 徐建刚 马海涛. 长三角高铁网络结构特征及形成机制[J]. 长江流域资源与环境, , (): 0 .
[5] 马小亮, 刘桂民, 吴晓东, 徐海燕, 叶琳琳, 张晓兰. 三江源高寒草甸下溪流溶解性有机碳的季节性输移特征[J]. 长江流域资源与环境, 2018, 27(10): 2387 -2394 .
[6] 陈万旭 李江风 冉端. 长江中游城市群土地利用转型和城镇化之间空间关系研究[J]. 长江流域资源与环境, , (): 0 .
[7] 苏 芳, 郑亚萍, 阚立娜, 蔡 莎. 基于CVM调查法评估城市公共绿地服务价值 ——以西部省会城市为例[J]. 长江流域资源与环境, 2018, 27(11): 2434 -2442 .
[8] 赵 毅, 徐绪堪, 李晓娟. 基于变权灰色云模型的江苏省水环境系统脆弱性评价[J]. 长江流域资源与环境, 2018, 27(11): 2463 -2471 .
[9] 任娟, 王建力, 杨平恒, 詹兆君, . 亚高山旅游景区岩溶地下水水化学动态变化及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2548 -2557 .
[10] 胡兴坤, 高 雷, 杨 浩, 刘绍平, 陈大庆, 段辛斌 . 长江中游黄石江段鱼类早期资源现状[J]. 长江流域资源与环境, 2019, 28(01): 60 -67 .