长江流域资源与环境 >> 2023, Vol. 32 >> Issue (10): 2173-2183.doi: 10.11870/cjlyzyyhj202310015

• 生态环境 • 上一篇    下一篇

水产养殖废水污染物含量与农灌适用性分析

郑天铭1,2,王沛芳1,2*,胡斌1,2,张明3,马晶洁1,2,王洵1,2,李鼎新1,2   

  1. (1.河海大学环境学院,江苏 南京 210098;2. 河海大学浅水湖泊综合治理与资源开发教育部重点实验室,江苏 南京 210098;3. 江苏省泰州引江河管理处,江苏 泰州 225321)
  • 出版日期:2023-10-20 发布日期:2023-10-26

Contamination of Aquaculture Waste Water and  Applicability of Agricultural Irrigation

ZHENG Tian-ming1,2, WANG Pei-fang1,2, HU Bin1,2, ZHANG Ming3,  MA Jing-jie1,2, WANG Xun1,2, LI Ding-xin1,2   

  1. (1.College of Environment, Hohai University, Nanjing 210098, China;2.Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes,Ministry of Education, Hohai University, Nanjing 210098,China; 3.Jiangsu Taizhou River Diversion Management office, Taizhou 225321, China)
  • Online:2023-10-20 Published:2023-10-26

摘要: 为助力长江大保护,实现循环农业的可持续发展,针对水产养殖废水回用的安全问题,于2022年3月监测了长江江苏段典型养殖模式下虾蟹塘和鱼类塘废水中的重金属、农药和抗生素含量,并借助内梅罗综合指数法和生态风险指数法评估其回用于农田灌溉的可行性。结果表明:重金属中Zn含量最高,虾蟹塘和鱼类塘废水含量分别为19.40和15.39 μg·L-1,其次为As、Ni、Pb;农药中扑草净含量最高,可达149.28 ng·L-1,除草剂和杀菌剂为养殖废水的主要农药种类;抗生素中氟苯尼考含量最高,可达151.40 ng·L-1,大环内酯类和酰氨醇类分别为虾蟹塘和鱼类塘废水的主要抗生素种类。风险评估表明,重金属平均含量低于《农田灌溉水质标准(GB5084-2021)》限值,仅S1的Hg具有潜在风险,使得该虾蟹塘废水表现为轻度污染;鱼类塘废水中农药和抗生素均对浮游植物产生高风险,RQ平均为4.11和36.94,而虾蟹塘废水中仅农药呈现高风险,其RQ为2.72。虾蟹塘中Hg和异丙甲草胺,鱼类塘中异丙甲草胺、多菌灵、氟苯尼考和磺胺甲噁唑为潜在的风险源,但各污染物含量均低于农作物的效应浓度。因此,养殖废水可用于农田灌溉,长期应用时需要进行针对性监测和处理。

Abstract: In order to promote the Yangtze River conservation, and to achieve sustainable development of circular agriculture, the safety issue of aquaculture wastewater reuse for farmland irrigation was investigated in this research. In March 2022, the concentrations of metal, pesticides, and antibiotics in shrimp/crab and fish aquaculture wastewater, under typical cultivation mode, were observed along the Jiangsu section of the Yangtze River. Nemerowpollution index method and ecological risk index method were adopted to assess the risk levels and feasibility of irrigation. Results showed that Zn was the most abundant heavy metal, and the concentration in shrimp/crab ponds and fish ponds were 19.40 and 15.39 μg·L-1, followed by Ni, As, and Pb. Prometryn was the most abundant pesticide, reaching concentrations of 149.28 ng·L-1, while herbicides and fungicides were the main types of pesticides in aquaculture wastewater. In addition, florfenicol was the most abundant antibiotic, reaching concentrations of 151.40 ng·L-1, while macrolides and amides were the main types of antibiotics in shrimp/crab ponds and fish ponds, respectively. The risk assessment results indicated that heavy metals were below the limit of the ‘Farmland Irrigation Water Quality Standard (GB5084-2021)’, and only Hg in pond S1 had a potential risk, causing the wastewater of shrimp/crab ponds appear to reach the level of slightly-polluted. When considering ecological risks to phytoplankton, both pesticides and antibiotics in fish ponds posed high risks with an average RQ of 4.11 and 36.94, respectively. And in shrimp/crab wastewater, only pesticides posed a high risk towards phytoplankton with an average RQ of 2.72. Hg and metolachlor in shrimp/crab ponds, metolachlor, carbendazim, florfenicol, and sulfamethoxazole in fish ponds were potential risk sources of pollution. However, the contents of metals, pesticides, and antibiotics in aquaculture wastewater were less than the effective concentration of crops. Therefore, aquaculture wastewater could be used for farmland irrigation, and monitoring and treatment of target pollutants are required for long-term application.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[2] 冯凡, 赵中华, 陈晨, 田园, 郦倩玉, 龚雄虎, 叶晨昊. 铜绿微囊藻对有机毒物菲的生理生态响应研究[J]. 长江流域资源与环境, 2018, 27(09): 2031 -2041 .
[3] 魏建瑛 徐建英 樊斐斐. 卧龙自然保护区植被覆盖度变化及其对地形因子的响应[J]. 长江流域资源与环境, , (): 0 .
[4] 王 磊, 李成丽.  

我国中部地区城市群多中心结构的增长效应 [J]. 长江流域资源与环境, 2018, 27(10): 2231 -2240 .

[5] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[6] 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481 -2495 .
[7] 康婷婷, 徐 欢, 张春华, 胡召玲. 区域尺度农田最大光能利用率参数估算及时空变化分析[J]. 长江流域资源与环境, 2018, 27(12): 2766 -2774 .
[8] 舒旺, 王鹏, 肖汉玉, 刘君政, 赵君, 余小芳. 鄱阳湖流域乐安河水化学特征及影响因素[J]. 长江流域资源与环境, 2019, 28(03): 681 -690 .
[9] 罗若愚, 钟易霖. 成都市社会空间结构演变研究(2000~2010)[J]. 长江流域资源与环境, 0, (): 768 -782 .
[10] 葛云健, 吴笑涵. 江苏历史时期洪涝灾害时空分布特征[J]. 长江流域资源与环境, 2019, 28(08): 1998 -2007 .