长江流域资源与环境 >> 2024, Vol. 33 >> Issue (3): 472-486.doi: 10.11870/cjlyzyyhj202403002

• 区域可持续发展 • 上一篇    下一篇

长江经济带绿色创新效率评价研究 ——基于双重异质性DEA区间交叉效率模型

向小东,陈炎光   

  1. (福州大学经济与管理学院,福建 福州 350108)
  • 出版日期:2024-03-20 发布日期:2024-04-03

Evaluation of Green Innovation Efficiency in the Yangtze River Economic Belt:  Based on the Double Heterogeneity Dea Interval Cross-Efficiency Model

 XIANG Xiao-dong,CHEN Yan-guang   

  1. (School of Economics and Management,Fuzhou University,Fuzhou 350108,China)
  • Online:2024-03-20 Published:2024-04-03

摘要:  为了更准确地评价长江经济带的绿色创新效率,综合考虑环境异质性、决策单元异质性和所有最优权重信息,构建了双重异质性DEA区间交叉效率模型,提出了单重异质性DEA区间交叉效率评价思想,对2013~2020年长江经济带沿线95个城市的绿色创新效率进行了评价,研究结果表明:(1)考察期内,无论在双重异质性还是单重异质性下,长江经济带整体绿色创新效率均未达到有效状态。但在单重异质性下,整体绿色创新效率呈现上升态势,且具有明显的阶段特征。(2)双重异质性下,长江经济带下游地区的绿色创新效率与城市发展水平不一致。(3)单重异质性下,绿色创新效率具有“下游优于中游,中游优于上游”的空间分布格局。(4)双重异质性下,长江经济带上游、中游、下游地区绿色创新效率最高的城市分别为遂宁、邵阳、亳州;单重异质性下,遂宁的绿色创新效率最高。基于上述结论,结合长江经济带各区域位置和城市发展阶段,提出了提升长江经济带绿色创新效率的建议。


Abstract: To evaluate the green innovation efficiency of the Yangtze River Economic Belt accurately, this paper took environmental heterogeneity, decision-making unit heterogeneity, and all optimal weighting schemes into consideration. We constructed a double heterogeneity DEA interval cross-efficiency model and proposed the concept of a single heterogeneity DEA interval cross-efficiency evaluation. The green innovation efficiency of 95 cities in the Yangtze River Economic Belt from 2013 to 2020 was evaluated. The results were shown as follows: (1) During the period of inspection, no matter whether under double heterogeneity or single heterogeneity, the Yangtze River Economic Belt's overall green innovation efficiency had not yet reached a state of effectiveness. If examined in single heterogeneity, a clear upward trend and stage characteristics were shown. (2) In the event of double heterogeneity, the green innovation efficiency of the downstream areas needed to be more compatible with the levels of urban development. (3) Under single heterogeneity, the efficiency of green innovation had a significant spatial distribution, which displayed that the downstream areas were better than the midstream areas, and the midstream areas were better than the upstream areas. (4) Under dual heterogeneity, the green innovation efficiency of Suining was ranked as the first in the upstream areas. The performance of the green innovation efficiency of Shaoyang was the best in the midstream areas. Meanwhile, in the downstream areas, Bozhou had the best green innovation efficiency. In the station of single heterogeneity, Suining's green innovation efficiency was the highest. Finally, based on the above conclusions as well as the Yangtze River Economic Belt's regional locations and stages of urban development, certain suggestions were put forward to improve the efficiency of green innovation in the Yangtze River Economic Belt.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .
[2] 孙惠惠, 章新平, 罗紫东, 尚程鹏, 贺新光, 饶志国.  近53 a来长江流域极端降水指数特征[J]. 长江流域资源与环境, 2018, 27(08): 1879 .
[3] 卢德彬 毛婉柳 杨东阳 赵佳楠. 基于多源遥感数据的中国PM2.5变化趋势与影响因素分析[J]. 长江流域资源与环境, , (): 0 .
[4] 胡继亮 熊自洁 张悦 高婷. 2019年2期自然灾害水平对农户投保意愿的影响分析——基于湖北微观调查数据[J]. 长江流域资源与环境, , (): 0 .
[5] 王凯, 王玉杰, 王彬, 张守红, 王云琦, 王晨沣. 黄壤坡面土壤分离速率研究[J]. 长江流域资源与环境, 2018, 27(09): 2114 -2121 .
[6] 方琳, 吴凤平, 王新华, 余燕团.  

基于共同前沿SBM模型的农业用水效率测度及改善潜力 [J]. 长江流域资源与环境, 2018, 27(10): 2293 -2304 .

[7] 潘超, 周驰, 苗滕, 刘林峰, 高健, 焦一滢, 李祝, 张佳敏, 王卉君, 徐德雄. 长江流域鄂西四河流大型底栖动物群落结构特征及水质生物学评价[J]. 长江流域资源与环境, 2018, 27(11): 2529 -2539 .
[8] 吕乐婷, 王晓蕊, 孙才志, 张 杰. 基于SWAT模型的细河流域蓝水绿水资源量时空分布研究[J]. 长江流域资源与环境, 2019, 28(01): 39 -47 .
[9] 李艳, 马百胜, 杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 2019, 28(02): 469 -482 .
[10] 柯杭, 王小军, 尹义星, 罗志文, . 衡水市1961~2015年极端降水和干旱的时空变化特征[J]. 长江流域资源与环境, 2019, 28(04): 971 -980 .