长江流域资源与环境 >> 2024, Vol. 33 >> Issue (9): 1844-1859.doi: 10.11870/cjlyzyyhj202409002

• 区域可持续发展 • 上一篇    下一篇

新型数字基础设施对碳生产率的影响——长江经济带例证

陈志建,申世敬,程玉浩,张庆娟   

  1. (华东交通大学经济管理学院,江西 南昌 330013)
  • 出版日期:2024-09-20 发布日期:2024-09-23

Impact of New Digital Infrastructure on Carbon Productivity:A Case Study of the Yangtze River Economic Belt

CHEN Zhi-jian, SHEN Shi-jing, CHENG Yu-hao, ZHANG Qing-juan   

  1. (School of Economics and Management, East China Jiaotong University, Nanchang 330013, China)
  • Online:2024-09-20 Published:2024-09-23

摘要:  在实现我国经济增长与碳减排双重目标下,新型数字基础设施为提升区域碳生产率提供了“新基遇”及切实可行的路径。为此,研究选择可获取的2009~2019年长江经济带108个城市的最新面板数据,通过核密度估计模型、空间杜宾模型、中介效应模型等方法探讨新型数字基础设施与碳生产率空间演化态势,并进一步分析新型数字基础设施对碳生产率的影响及传导机制。结果表明:(1)长江经济带新型数字基础设施发展水平与碳生产率水平均呈现空间分异特征,同时两者之间存在空间错位的演化态势。(2)新型数字基础设施显著提高了碳生产率,且这一结论在一系列稳健性检验后仍然成立。(3)绿色技术创新在新型数字基础设施与碳生产率的正向关系中具有中介传导作用;新型数字基础设施对碳生产率的作用存在空间溢出效应。(4)进一步异质性分析发现,非资源型城市新型数字基础设施的发展对碳生产率的提升作用较强,成渝城市群受新型数字基础设施发展的影响更大。研究结论为推动我国实现“双碳”目标,促进城市高质量发展提供了新的经验证据。

Abstract: Under the dual goals of achieving economic growth and carbon emission reduction in China, the new digital infrastructure provides a new opportunity and a practical path for improving regional carbon productivity. Based on the latest and available panel data of 108 cities in the Yangtze River Economic Belt (YREB) from 2009 to 2019, the paper used kernel density estimation model, spatial durbin model, mediation effect model to explore the spatial evolution trend of the new digital infrastructure and carbon productivity. The impact and transmission mechanism between the new digital infrastructure and carbon productivity was also explored. The results were as follows: (1) The development level of the new digital infrastructure and the level of carbon productivity in the YREB showed a spatial differentiation, with an evolution trend of spatial mismatch. (2) The new digital infrastructure significantly improved carbon productivity, which was still valid after a series of robustness tests. (3) The new digital infrastructure could improve carbon productivity by promoting green technological innovation. The influence of the new digital infrastructure on carbon productivity showed an obvious spatial spillover effect. (4) The heterogeneity analysis showed that the positive promoting effect was more significant in non-resource cities and Chengdu-Chongqing urban agglomerations. These conclusions may provide new empirical evidence for promoting the realization of the“carbon neutral”goal towards a high-quality urban development.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张鑫, 陈志刚. 经济增长激励、官员异质性与城市工业污染:以长三角地区为例[J]. 长江流域资源与环境, 2018, 27(07): 1314 .
[2] 郭政, 董平, 陆玉麒, 黄群芳, 马颖忆. 长三角集装箱港口体系演化及影响因素分析[J]. 长江流域资源与环境, 2018, 27(07): 1340 .
[3] 蓝希, 刘小琼, 郭炎, 陈昆仑. “长江经济带”战略背景下武汉城市水环境承载力综合评价[J]. 长江流域资源与环境, 2018, 27(07): 1345 .
[4] 罗能生, 王玉泽.彭郁, 李建明. 长江中游城市群生态效率的空间关系及其协同提升机制研究[J]. 长江流域资源与环境, 2018, 27(07): 1349 .
[5] 刘钢, 刘坤琳, 汪玮茜, 赵爽. 水质感知视角下水库移民满意度分析——基于有序逻辑回归的实证研究[J]. 长江流域资源与环境, 2018, 27(07): 1355 .
[6] 戢晓峰, 刘丁硕. 基于3D理论与SEM的县域交通可达性与空间贫困的耦合机制[J]. 长江流域资源与环境, 2018, 27(07): 1360 .
[7] 张大鹏, 曹卫东, 姚兆钊, 岳洋, 任亚文. 上海大都市区物流企业区位分布特征及其演化[J]. 长江流域资源与环境, 2018, 27(07): 1365 .
[8] 佘颖, 刘耀彬. 国内外绿色发展制度演化的历史脉络及启示[J]. 长江流域资源与环境, 2018, 27(07): 1370 .
[9] 侯雯嘉, 陈长青, 乔辉, 孙新素, 周曙东. 1980~2009年长江下游地区油菜冻害时空特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1375 .
[10] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .