长江流域资源与环境 >> 2011, Vol. 20 >> Issue (1): 96-.

• 生态环境 • 上一篇    下一篇

坡面冲刷过程中红壤分离速率定量研究

 王军光, 李朝霞, 蔡崇法, 郭忠录, 杨伟   

  1. (华中农业大学亚热带农业资源与环境农业部重点实验室|湖北 武汉 430070)
  • 出版日期:2011-01-20

QUANTITATIVE RESEARCH OF RED SOIL DETACHMENT RATE IN THE SLOPE SCOURING PROCESS

WANG Junguang, LI Zhaoxia, CAI Chongfa, GUO Zhonglu, YANG Wei   

  1. (Key Laboratory of Subtropical Agriculture and Environment,Ministry of Agriculture,Huazhong Agricultural University,Wuhan 430070,China)〖
  • Online:2011-01-20

摘要:

土壤分离是土壤坡面侵蚀产沙的必要途径和重要过程,准确预测土壤分离过程对完善土壤侵蚀物理模型具有重要意义。利用钢制变坡冲刷水槽,在不同坡度(8.8%~46.6%)和流量(0.2~1.0 L/s)组合下,研究了第四纪粘土发育红壤分离速率与流量、坡度以及水流剪切力、水流功率、单位水流功率3种水动力参数的关系。研究结果表明红壤分离速率是流量、坡度的幂函数,且坡度和单宽流量的多元回归方程能准确预测土壤分离速率(R2=0.966);水流剪切力、水流功率和单位水流功率3个水动力参数指标与土壤分离率均呈线性关系,相关系数R2分别为0.950、0.965和0.849,水流功率是描述土壤分离速率最为确切的水动力参数;描述红壤分离速率的相关水蚀因子方程类型和前人研究结果相同,但表征土壤可蚀性的系数值相差较大。〖

Abstract:

Soil detachment is the necessary approach and the most important process of soil erosion sediment yield.A precise prediction of this is significant to the development of physical based erosion model.Based on runoff scouring experiments by a hydraulic flume,the relationship of red soil detachment rate and slope,flow rate,shear stress,stream power and unit stream power were researched under different slope gradients(88%~466%)and runoff discharges (02~10 L/s)in this paper.The experimental results showed that soil detachment rates would be predicted by a power function of flow rate and slope(〖WTBX〗R〖WTBZ〗2=0966).Among shear stress,stream power and unit stream power,all of them were a linear relation with soil detachment rate(〖WTBX〗R〖WTBZ〗2 is 0949、0965 and 0848),and stream power was best related to soil detachment rate.The results indicated that describing the equation type of red soil detachment rate were considered the same to previous studies,however,the characterization of soil erodibility coefficient showed significant difference.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曾慧卿. 近40年气候变化对江西自然植被净第一性生产力的影响[J]. 长江流域资源与环境, 2008, 17(2): 227 .
[2] 徐祖信,叶建锋. 前置库技术在水库水源地面源污染控制中的应用[J]. 长江流域资源与环境, 2005, 14(6): 792 -795 .
[3] 张青青,张世熔,李婷,张林,林晓利,. 基于多元数据的景观格局演变及其影响因素——以流沙河流域宜东段为例[J]. 长江流域资源与环境, 2006, 15(Sup1): 125 -130 .
[4] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[5] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[6] 周国忠,冯海霞. 浙江省旅游资源地区差异研究[J]. 长江流域资源与环境, 2006, 15(2): 157 -163 .
[7] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[8] 梁流涛, 曲福田, 王春华. 基于DEA方法的耕地利用效率分析[J]. 长江流域资源与环境, 2008, 17(2): 242 .
[9] 罗璐琴, 周敬宣, 李湘梅. 生态足迹动态预测模型构建与分析[J]. 长江流域资源与环境, 2008, 17(3): 440 .
[10] 刘德富,黄钰铃,| 王从锋,. 水工学的发展趋势——从传统水工学到生态水工学[J]. 长江流域资源与环境, 2007, 16(1): 92 -96 .