长江流域资源与环境 >> 2011, Vol. 20 >> Issue (09): 1120-.

• 生态环境 • 上一篇    下一篇

大宁河叶绿素a的因子分值-多元线性回归预测模型研究

王丽平|郑丙辉   

  1. (中国环境科学研究院河流与海岸带环境研究室|北京 100012)
  • 出版日期:2011-09-20

PREDICTION OF CHLOROPHYLLA IN THE DANING RIVER BY PRINCIPAL COMPONENT SCORES IN MULTIPLE LINEAR REGRESSION MODELS

WANG Liping, ZHENG Binghui   

  1. (River &|Coastal Environment Research Center,Chinese Research Academy of Environmental Sciences,Beijing 100012,China
  • Online:2011-09-20

摘要:

自从2003年三峡水库蓄水以后,其支流大宁河水华频发且频率呈上升趋势。叶绿素a(Chla)是指示水体中浮游植物初级生产力的有效指标。采用因子分值-多元线性回归方法研究了大宁河水体11个相关水质因子与Chla之间的相关关系。因子分析用于简化水质指标之间的相关性,以因子得分(Score values)为自变量用于多元线性回归分析中。结果发现log(Chla)与6个因子分值明显相关,所获得多元线性回归模型为:log(Chl a)=0.579-0191×(Score 1)-0.013×(Score 2)-0.013×(Score 3)+0042×(Score 4)+0134×(Score 5)-0.059×(Score 6),相关系数 R= 0.731、相关系数的平方 R 2=0535,说明自变量可以解释因变量53.5%的差异性。实测数据验证结果表明:该模型能够较好的预测2010年1~10月水体中Chl a浓度的峰值和基本变化趋势

Abstract:

Since 2003 after impoundment of Three Gorges Reservoir its tributary-Daning River began with frequent water blooms,and its frequency is increasing and expanding.Chlorophylla (Chla) is a wellaccepted index for phytoplankton abundance and primary productivity in an aquatic environment.The relationships between Chla and 11 water quality indices in Daning River were studied by principal component scores in multiple linear regression analysis.Principal component analysis was used to simplify the complexity of relations between water quality indices.Score values obtained by principal component scores were used as independent variables in the multiple linear regression models.The results showed that log(Chla) was found to have significant linear relationship with 6 score values from the principal component analysis of variables, and predicted Chla values of Daning River were obtained from the following model:log(Chla) = 0.579-0.191× (Score 1)-0013×(Score 2)-0013×(Score 3)+0042×(Score 4)+0134×(Score 5)-0059×(Score 6),〖WTBX〗R〖WTBZ〗=0731 and 〖WTBX〗R〖WTBZ〗2 (goodness of fit)=0535,indicating that 535% of variation in Chla could be estimated by this modeling approach.The results of further validation using a new dataset suggested that the modeling obtained in this study successfully simulated Chla peak concentrations and developed tendency from January to October in 2010

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂钠, 于坤香. 我国世界自然遗产地旅游业环境经济核算思路[J]. 长江流域资源与环境, 2009, 18(2): 121 .
[2] 曹银贵,王 静,程 烨,刘爱霞,许 宁,郝 银,饶彩霞. 三峡库区土地利用变化与影响因子分析[J]. 长江流域资源与环境, 2007, 16(6): 748 .
[3] 徐俊杰, 何 青, 刘 红, 陈吉余. 2006年长江特枯径流特征及其原因初探[J]. 长江流域资源与环境, 2008, 17(5): 716 .
[4] 游庆龙. 三江源地区1961~2005年气温极端事件变化[J]. 长江流域资源与环境, 2008, 17(2): 232 .
[5] 吴炳方,罗治敏. 基于遥感信息的流域生态系统健康评价——以大宁河流域为例[J]. 长江流域资源与环境, 2007, 16(1): 102 -106 .
[6] 郝红升,李克锋,李然,赵再兴. 取水口高程对过渡型水库水温分布结构的影响[J]. 长江流域资源与环境, 2007, 16(1): 21 -25 .
[7] 刘承良, 田 颖, 梁 滨,5. 武汉城市圈产业经济的系统性分析[J]. 长江流域资源与环境, 2009, 18(1): 1 .
[8] 伍新木,廖 丹,严 瑾. 制度创新:依托武汉建设长江中游城市群[J]. 长江流域资源与环境, 2004, 13(1): 1 -6 .
[9] 李翀,廖文根,彭静,叶柏生. 宜昌站1900~2004年生态水文特征变化[J]. 长江流域资源与环境, 2007, 16(1): 76 -80 .
[10] 张心怡,刘 敏,孟 飞. 基于RS和GIS的上海城建用地扩展研究[J]. 长江流域资源与环境, 2006, 15(1): 29 -33 .