-
Study on nitrogen transformation rates after coastal beach reclamation
- ZHAO Xin-xin, JIN Xiao-bin, DU Xin-dong, ZHOU Yin-kang, LIU Hai-ling
-
2015, (09):
1552-1559.
doi:10.11870/cjlyzyyhj201509016
-
Abstract
(
466 )
PDF (1299KB)
(
13
)
Save
-
References |
Related Articles |
Metrics
Nitrogen cycle system is an important part of the material recycling of ecosystem and plays an important role in the ecological balance and the sustainable development of the human environment. Beach wetland is the transitional zone between land and marine ecosystems and is the buffer responding to the environmental change. It not only has an important function in absorption of nitrogen, phosphorus and other nutrients, but also plays a significant role in transformation and retention of those nutrients. However, with the recent rapid development of industry and agriculture, and the expanding coastal beach reclamation and heavy use of nitrogen fertilizer, the tidal wetland ecosystem has been destroyed to some extent. It's a serious threat to the nitrogen cycle system and to the ecological balance. Therefore, it's necessary to do some research in nitrogen transformation and transformation law after beach reclamation. In this paper we sampled over the beach wetlands of different reclamation ages. The selected reclamation ages are 0 a, 3 a, 6 a, 17 a, 30 a and 60 a. After samplings, we had experiments over these soils and then obtained corresponding gross nitrogen transformation rates. The results showed that the indicators representing nitrogen activations such as gross mineralization, nitrification, net mineralization and net nitrification rates accelerated after reclamation, while the ammonium assimilation rate that was beneficial to nitrogen retention had no significant change and the nitrate assimilation rate slowed down. All the nitrogen transformation rates became stabilized after the reclamation year 30 a. The correlation analysis showed that, the degree of correlation between soil gross nitrogen transformation rates and reclamation age was net mineralization> gross mineralization> ammonium assimilation > net nitrification> gross nitrification> nitrate assimilation (p<0.01). Among them, the soil gross mineralization rate, gross nitrification rate, ammonium assimilation rate, net mineralization, and net nitrification rate had significantly positive correlations with reclamation age. The correlation coefficients were 0.929, 0.798, 0.819, 0.966 and 0.800, respectively. However, the nitrate assimilation rate had a significantly negative correlation with reclamation age, and the correlation coefficient was -0.685. We also find that the total nitrogen, nitrate, pH and organic carbon had significantly correlation with gross nitrogen transformation rates (p<0.01), while the ammonium's correlation with gross nitrogen transformation rates was not so obvious (p<0.01).The beach reclamation brings changes over soil properties such as total nitrogen, nitrate, pH, organic carbon factors and so on. Then, these changes bring diversifications over various gross nitrogen transformation rates such as gross mineralization, nitrification, ammonium assimilation rate, nitrate assimilation rate and so on. However, all the changes will cause the nitrogen loss and simultaneously destruct the soil nitrogen ecosystem balance. Beach reclamation process is one of the factors leading eutrophication of coastal water. Therefore, it's necessary to respect and comply with soil nitrogen cycling and transformation law when we try to utilize them.