长江流域资源与环境 >> 2014, Vol. 23 >> Issue (06): 869-.doi: 10.11870/cjlyzyyhj201406018

• 长江中游低湿地作物研究专题 • 上一篇    下一篇

基于HJ卫星混合像元分解法的湖北省四湖地区夏收作物种植信息提取

熊勤学, 胡佩敏   

  1. (1. 长江大学长江中游湿地农业教育部工程研究中心,湖北 荆州434025;2. 湖北省荆州市气象局,湖北 荆州434020)
  • 出版日期:2014-06-20

EXTRACTING PLANTING INFORMATION OF SUMMER HARVESTING CROPS IN SHIHU REGION FROM HJ CCD DATA USING UNMIXING ALGORITHM DATA

XIONG Qinxue 1, HU Peimin 2   

  1. (1. Engineering Research Center of Wetland Agriculture in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou 434025, China;2. Jingzhou Meteorologic Bureau, Jingzhou 434020, China)
  • Online:2014-06-20

摘要:

混合像元是造成中低空间分辨率遥感数据计算机解译不准确的主要原因,通过收集2013年四湖地区夏收作物生长期内的不用生育时期的三景HJ卫星CCD数据,生成一个15波段的“类高光谱”数据;在采用阀门技术结合夏收作物NDVI指数变化特点,提取所有夏收作物(小麦与油菜)在四湖地区的空间分布的基础上,成功运用改进的逐步回归法计算出小麦与油菜在混合像元中的丰度值,高精度地取得了四湖地区小麦、油菜种植区的空间分布;将部分结果与同期资源三号卫星融合数据作为标准进行比较,证明基于改进的逐步回归法计算混合像元的丰度值是比较准确的,为运用HJ卫星CCD数据高精度提取农作物种植信息提供了一种可行的方法

Abstract:

Mixed pixel is a mainly factor that causes inaccurate classification results. In this paper we extracted the planting information of summer harvesting crops (mainly wheat and rape) in Shigu region of Hubei Province from HJ CCD data using the linear mixed model with an improved stepwise regression method. The detail process was as follow: preprocessing (radiometric correction and geometric correction) three HJ CCD remote sensing dates (spatial resolution is 30 m) in 2013, and created hyperspectrallike images with 15 bands using the layer stacking technique. Extracted four spectral characteristics curves of wheat rape water and uncovered land in hyperspectrallike images using EARMSE (endmember average root mean square error) methods combined with pure pixels index and GPS survey. According to time series characteristics of crop phenology, we extracted spatial distribution of summer harvest crop fields using  NDVI threshold. Finally according to four types of endmember spectral characteristics curves and hyperspectrallike images with 15 bands that only include summer harvest crop, we used the Linear Mixture Spectrum Analysis method that replace multiple regression with improved wise step, and calculated abundance value of four types of endmember in each mixed pixel. The calculated values was compared to ground truth data that were derived from ZY03 image (spatial resolution is 21 m) using maximum likelihood classification method in subarea that area is 522 square kilometer. The result shows that the error rate of rape area is 67% and that of wheat is 95%, indicating that this reversing method is accurate in Shuhu region. The paper provids a new method with high precision to extract crop planting information with low spatial resolution data, especially in southern part of China where most of pixels are mixed pixels

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂钠, 于坤香. 我国世界自然遗产地旅游业环境经济核算思路[J]. 长江流域资源与环境, 2009, 18(2): 121 .
[2] 曹银贵,王 静,程 烨,刘爱霞,许 宁,郝 银,饶彩霞. 三峡库区土地利用变化与影响因子分析[J]. 长江流域资源与环境, 2007, 16(6): 748 .
[3] 徐俊杰, 何 青, 刘 红, 陈吉余. 2006年长江特枯径流特征及其原因初探[J]. 长江流域资源与环境, 2008, 17(5): 716 .
[4] 游庆龙. 三江源地区1961~2005年气温极端事件变化[J]. 长江流域资源与环境, 2008, 17(2): 232 .
[5] 吴炳方,罗治敏. 基于遥感信息的流域生态系统健康评价——以大宁河流域为例[J]. 长江流域资源与环境, 2007, 16(1): 102 -106 .
[6] 郝红升,李克锋,李然,赵再兴. 取水口高程对过渡型水库水温分布结构的影响[J]. 长江流域资源与环境, 2007, 16(1): 21 -25 .
[7] 刘承良, 田 颖, 梁 滨,5. 武汉城市圈产业经济的系统性分析[J]. 长江流域资源与环境, 2009, 18(1): 1 .
[8] 伍新木,廖 丹,严 瑾. 制度创新:依托武汉建设长江中游城市群[J]. 长江流域资源与环境, 2004, 13(1): 1 -6 .
[9] 李翀,廖文根,彭静,叶柏生. 宜昌站1900~2004年生态水文特征变化[J]. 长江流域资源与环境, 2007, 16(1): 76 -80 .
[10] 张心怡,刘 敏,孟 飞. 基于RS和GIS的上海城建用地扩展研究[J]. 长江流域资源与环境, 2006, 15(1): 29 -33 .