长江流域资源与环境 >> 2014, Vol. 23 >> Issue (09): 1242-.doi: 10.11870/cjlyzyyhj201409009

• 自然资源 • 上一篇    下一篇

基于InVEST模型的秦岭山地土壤流失及土壤保持生态效益评价

李婷,刘康,胡胜,包玉斌   

  1. (西北大学城市与环境学院,陕西 西安 710127
  • 出版日期:2014-09-20

SOIL EROSION AND ECOLOGICAL BENEFITS EVALUATION OF#br# QINLING MOUNTAINS BASED ON THE INVEST MODEL

LI Ting,LIU Kang,HU Sheng,BAO Yubin   

  1. (College of Urban and Environmental Science,Northwest University,Xian 710127,China)
  • Online:2014-09-20

摘要:

为了解秦岭山地土壤侵蚀及土壤保持生态服务功能的空间分布特征,采用InVEST 土壤保持模型,从研究区、流域、县域3个尺度,对其潜在与实际土壤侵蚀量进行计算,在此基础上进一步应用该模型量化研究区土壤保持生态服务价值,得到土壤保持服务价值空间分布图。研究结果表明:(1)2012年秦岭山地潜在与实际土壤侵蚀量分别为4588×108 t、152×108 t,五大流域和各县区以轻度侵蚀和中度侵蚀为主,较为严重的地区为汉江流域南部紫阳县6323 t/(hm2[DK]·a)[JP2]和岚皋县5869 t/(hm2[DK]·a),属强烈侵蚀。(2)全区土壤保持总量4337×108 t,[JP]其中泥沙持留量143×108 t,单位面积土壤保持量为71979 t/(hm2[DK]·a);减少泥沙疏浚工程和水质治理花费的土壤保持服务价值共计4184亿元。各县区土壤保持服务价值量在001亿元至475亿元不等,价值量在096~191亿元之间的县区占全区的4413%,其次为191~285亿元(2522%)。(3)对于秦岭山地土壤侵蚀的防治及其生态效益的建设,保证林地面积的绝对优势是首要条件;对于大于25°的坡耕地,应继续推行还林还草政策

Abstract:

 Being fundamental for human life and development,the ecological function of soil conservation attracted more and more attention in scientific research Qinling Mountains,which is the vital water catchment area of middle route of South to North water transfer project,play an important role both in providing adequate access for water with a qualified water quality,and sediment retention with deposition reducing in rivers The InVEST model based on the USLE model improves the soil conservation by fully considering sediment removal through routing filtration and sedimentation in dead volume of reservoirs in the area Vegetation does not only keep sediment from eroding where it grows also traps sediment that has eroded upstream So we estimate how much of the sediment eroded on all pixels will be trapped by downstream vegetation based on the ability of vegetation in each pixel to capture and retain sediment We used the InVEST model (Sediment Retention Model step 1) to study the potential soil erosion and actual soil erosion of Qinling Mountains at the scales of the study area,watersheds and administrative regions And soil conservation service value was quantfied in this area by using the step 2 of the model The result indicates as follows. (1) the total potential soil erosion and actual soil erosion of Qinling Mountains in 2012 were 4588×108  t,152×108  t The five watersheds (Jialing River,Han River,Wei River,Dan River and Luo River) were mainly light erosion intensity and moderate erosion intensity Ziyang and Langao both in the south of Han River watershed had strong erosion intensity which suffered from serious soil erosion in 6323 t/(hm2[DK]·a) and 5869 t/(hm2[DK]·a),respectively. (2) The amount of soil preserved by the ecosystems of Qinling Mountains was approximately 4337×108 t,and the average capacity per unit area was 71979 t/(hm2[DK]·a) for the entire region In 2012,the soil conservation service value of avoiding dredging and water quality in Qinling Mountains reached 4,187 million yuan,showing a rank of Dan River>Wei River>Han River>Jialing River>Luo River per unit area The soil conservation service value in each county was between 1 to 475 million yuan,and mainly distributed in 96 to 191 million. (3) Ensuring certain area of forest land is the prerequisite of preventing deterioration of large area soil erosion and increasing the ecological benefits in Qinling Mountains Meanwhile,keeping pushing the policy of returning farmland to forestry is necessary for slope farmland above 25°. (4) A major cause of any possible errors in this study is that the sediment retention value for each LULC class comes from the InVEST model But surely,as an important hydrologic process,traping sediment that has eroded upstream cannot be ignored Or,the amount of soil preserved by ecosystems of Qinling Mountains could have a deviation of 143×108 t at least

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[3] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[4] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[5] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[6] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[7] 张代钧,许丹宇,任宏洋,曹海彬,郑 敏,刘惠强. 长江三峡水库水污染控制若干问题[J]. 长江流域资源与环境, 2005, 14(5): 605 -610 .
[8] 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337 .
[9] 胡鸿兴, 张岩岩, 何伟, 田蓉, 钟鑫, 韩世松, 李思思, 王俊杰陈文方, 杨阳, 陈侈, 邓晗, 文英, 崔雅婷, 李茜,  王璇, 彭菁菁, 高鑫, 唐义. 神农架大九湖泥炭藓沼泽湿地对镉(Ⅱ)、铜(Ⅱ)、铅(Ⅱ)、锌(Ⅱ)的净化模拟[J]. 长江流域资源与环境, 2009, 18(11): 1050 .
[10] 王肇磊, 贺新枝. 晚清时期湖北自然灾害的治理及其经验教训[J]. 长江流域资源与环境, 2009, 18(11): 1080 .