长江流域资源与环境 >> 2015, Vol. 24 >> Issue (05): 816-823.doi: 10.11870/cjlyzyyhj201505014
韩华1,2, 王昊彬1,2, 余华光1,2, 谭渝峰1,2, 由文辉1,2
HAN Hua1,2, WANG Hao-bin1,2, YU Hua-guang1,2, TAN Yu-feng1,2, YOU Wen-hui1,2
摘要: 为了研究不同盐度梯度下芦苇(Phragmites australis)的生态适应性及其生长的限制因子, 对崇明盐度梯度下的3个滩涂湿地生长的芦苇及土壤生态化学计量学指标进行测定;分析不同盐度下芦苇种群的生态化学计量学之间的差异, 及土壤与芦苇元素、元素比之间的相关性。结果表明:(1)崇明滩涂湿地土壤C、N、P含量和C/N、C/P、N/P平均值分别是15.01、0.69、0.86 g/kg, 22.09、21.87、0.96。芦苇的C、N、P含量及C/N、C/P、N/P平均值分别为413.17、10.75、2.53g/kg, 41.49、293.58、7.29。(2)随着崇明滩涂湿地土壤盐度增加, 土壤的C、N含量及芦苇的C含量、C/N先降低后增加;土壤的C/N、C/P、N/P及植物的C/P、N/P增加;土壤的P含量及植物N、P含量降低。(3)盐度梯度下滩涂湿地土壤与芦苇生态化学计量学中的C、P、C/P、N/P之间均正相关关系, 土壤N含量与植物的C/P正相关, 与N/P负相关;而C/N与植物P含量之间有负相关性。(4)该研究区土壤的C、N元素较为匮乏, P含量较高;植物的N/P值小于14, 说明崇明芦苇生长主要受到N的限制。
中图分类号:
[1] STERNER R W, ELSER J J.Ecological stoichiometry:The biology of elements from molecules to the biosphere[M].Princeton University Press, 2002. [2] WU T G, YU M K, WANG G G, et al.Leaf nitrogen and phosphorus stoichiometry across forty-two woody species in Southeast China[J].Biochemical Systematics and Ecology, 2012, 44(12):255-263. [3] LI L P, STEFAN Z, HAN W, et al.Nitrogen and phosphorus stoichiometry of common reed(Phragmites australis) and its relationship to nutrient availability in northern China[J].Aquatic Botany, 2014, 112(11):84-90. [4] DIJKSTRA F A, PENDALL E, MORGAN J A, et al.Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland[J].New Phytologist, 2012, 196(3):807-815. [5] LEITNER S, WANEK W, WILD B, et al.Influence of litter chemistry and stoichiometry on glucan depolymerization during decomposition of beech(Fagus sylvatica) litter[J].Soil Biology & Biochemistry, 2012, 50(7):174-187. [6] GRIFFITHS B S, SPILLES A, BONKOWSKI M.C:N:P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess[J].Ecological Processes, 2012, 1(6):1-11. [7] 彭佩钦, 张文菊, 童成立, 等.洞庭湖湿地土壤碳、氮、磷及其土壤物理性状的关系[J].应用生态学报, 2005, 16(10):1872-1878. [8] 王晶苑, 王绍强, 李纫兰, 等.中国四种森林类型主要优势植物的C:N:P化学计量学特征[J].植物生态学报, 2011, 35(6):587-595. [9] 王维奇, 曾从盛, 钟春棋, 等.人类干扰对闽江河口湿地土壤碳、氮、磷生态化学计量学特征的影响[J].环境科学, 2010, 31(10):2411-2416. [10] 王维奇, 徐玲琳, 曾从盛, 等.河口湿地植物活体-枯落物-土壤的碳氮磷生态化学计量学特征[J].生态学报, 2011, 31(23):7119-7124. [11] 杨永兴, 刘长娥, 杨杨, 等.长江河口九段沙海三棱藨草湿地生态系统N、P、K的循环特征[J].生态学杂志, 2009, 28(10):1977-1985. [12] 王纯, 王维奇, 曾从盛, 等.闽江河口区盐-淡水梯度下湿地土壤氮形态及储量特征[J].水土保持学报, 2011, 25(5):147-153. [13] 欧维新, 杨桂山, 高建华, 等.盐城潮滩湿地对N、P营养物质的截留效应研究[J].湿地科学, 2006, 4(3):180-188. [14] 王维奇, 王纯, 仝川, 等.闽江河口区盐-淡水梯度下芦苇沼泽土壤有机碳特征[J].湿地科学, 2012, 10(2):164-169. [15] 李品芳, 侯振安, 龚元石, 等.NaCl胁迫对苜蓿和羊草苗期生长及养分吸收的影响[J].植物营养与肥料学报, 2001, 7(2):211-217. [16] 徐宏发, 赵云龙.上海市崇明东滩鸟类自然保护区科学考察集[M].北京:中国林业出版社, 2005. [17] 鲍士旦.土壤农化分析[M].北京:农业出版社, 1988:29-125. [18] 仝川, 贾瑞霞, 王维奇, 等.闽江口潮汐盐沼湿地土壤碳氮磷的空间变化[J].地理研究, 2010, 29(7):1203-1213. [19] 李彦, 张英鹏, 孙明, 等.盐分胁迫对植物的影响及植物耐盐机理研究进展[J].中国农学通报, 2008, 24(1):258-265. [20] 吕晓霞, 翟世奎, 于增慧, 等.长江口内外表层沉积物中营养元素的分布特征研究[J].海洋通报, 2005, 24(2):40-45. [21] MANZONI S, TROFYMOW J A, JACKSON R B, et al.Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter[J].Ecological Monofraphs, 2010, 80:89-106. [22] TIAN H, CHEN G, ZHANG C, et al.Pattern and variation of C:N:P ratios in China's soils:a synthesis of observational data[J].Biogeochemistry, 2010, 98(3):139-151. [23] 王素平, 郭世荣.盐胁迫对黄瓜幼苗根系生长和水分利用的影响[J].应用生态学报, 2006, 17(10):1883-1888. [24] 张爽, 郭成久, 苏芳莉, 等.不同盐度水灌溉对芦苇生长的影响[J].沈阳农业大学学报, 2008, 39(1):65-68. [25] 黄建军, 王希华.浙江天童32种常绿阔叶树叶片的营养及结构特征[J].华东师范大学学报, 2003, 1(3):92-97. [26] JOBBÁGY E G, JACKSON R B.The vertical distribution of soil organic carbon and its relation to climate and vertation[J].Ecological applications, 2000, 10(2):423-436. [27] 高亚军, 朱培立, 稻麦轮作条件下长期不同土壤管理对有机质和全氮的影响[J].土壤与环境, 2000, 9(1):27-30. [28] 宋云, 李德志, 李红, 等.崇明三岛土壤有机质和全氮的空间分布特征及影响因素分析[J].河南农业大学学报, 2009, 43(2):204-209. [29] 王维奇, 王纯, 刘百贵, 等.盐度对湿地枯落物分解过程中碳氮磷化学计量比的影响[J].中国环境科学, 2012, 32(9):1683-1687. [30] 程滨, 赵永军, 张文广, 等.生态化学计量学研究进展[J].生态学报, 2010, 30(6):1628-1637. [31] 王俊, 李凤民, 贾宇, 等.半干旱黄土区苜蓿草地轮作农田土壤氮、磷和有机质变化[J].应用生态学报, 2005, 16(3):439-444. [32] ELSER J J, STERNER R W, GOROKHOVA E, et al.Biological stoichiometry from genes to ecosystems.Ecology Letters[J], 2000, 3(6):540-550. [33] 郑淑霞, 上官周平.黄土高原地区植物叶片养分组成的空间分布格局[J].自然科学进展, 2006, 16(8):965-973. [34] 任书杰, 于贵瑞, 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J].环境科学, 2007, 28(12):2665-2673. [35] 刘存歧, 李昂, 李博, 等.白洋淀湿地芦苇生物量及氮、磷储量动态特征[J].环境科学学报, 2012, 32(6):1503-1511. [36] 林小涛, 梁海含.澳门路氹湿地芦苇氮磷含量的季节变化[J].生态学杂志, 2007, 26(1):5-8. [37] GVSEWELL S.N:P ratios in terrestrial plants:variation and functional significance[J].New Phytologist, 2004, 164:243-266. [38] KOERSELMAN W, MEULEMAN A F M.The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation[J].Journal of Applied Ecology, 1996, 33(6):1441-1450. [38] 赵美霞, 李德志, 潘宇, 等.崇明东滩湿地芦苇和互花米草N、P利用策略的生态化学计量学分析[J].广西植物, 2012, 32(6):715-722. [39] ELSER J J, DOBBERFUHL D R, MACKAY N A, et al.Organism Size, Life History, and N:P Stoichiometry[J].BioScience, 1996, 46(9):674-684. [40] 曹建华, 李小波, 赵春梅, 等.森林生态系统养分循环研究进展[J].热带农业科学, 2007, 27(6):68-79. |
[1] | 石冰, 马金妍, 王开运, 巩晋楠, 张超, 刘为华. 崇明东滩围垦芦苇生长、繁殖和生物量分配对大气温度升高的响应[J]. 长江流域资源与环境, 2010, 19(04): 383-. |
|