长江流域资源与环境 >> 2015, Vol. 24 >> Issue (09): 1606-1612.doi: 10.11870/cjlyzyyhj201509023

• 生态环境 • 上一篇    下一篇

长江上游流域降雨侵蚀力变化对河流输沙量的影响

黄小燕1, 韦杰1,2   

  1. 1. 重庆师范大学地理与旅游学院, 重庆 401331;
    2. 三峡库区地表过程与环境遥感重庆市重点实验室, 重庆 401331
  • 收稿日期:2014-11-09 修回日期:2015-03-06 出版日期:2015-09-20
  • 作者简介:黄小燕(1990~),女,硕士研究生,研究方向为流域侵蚀与水土保持.E-mail:331406506@qq.com
  • 基金资助:
    国家科技支撑计划(2011BAD31B03);重庆市基础与前沿研究计划项目(cstc2013jcyjA80014)

Effect of the basin rainfall erosivity change on the riverine sediment load in the upper yangtze

HUANG Xiao-yan1, WEI Jie1,2   

  1. 1. Geography & Tourism College, Chongqing Normal University, Chongqing 401331, China;
    2. Chongqing Key Laboratory of Surface Process and Environment Remote Sensing in the Three Gorges Reservoir Area, Chongqing 401331, China
  • Received:2014-11-09 Revised:2015-03-06 Online:2015-09-20
  • Contact: 韦杰,E-mail:wei_jie@mails.ucas.ac.cn E-mail:wei_jie@mails.ucas.ac.cn

摘要: 利用长江上游主要水文站1956~2010年输沙量数据和雨量站日降雨量时间序列资料,采用线性回归研究流域降雨侵蚀力与河流输沙量的关系,并估算长江上游各子流域降雨侵蚀力变化对河流输沙量的总体贡献。结果表明:长江上游降雨侵蚀力为2 362 MJ·mm/(hm2·h·a)到3 814 MJ·mm/(hm2·h·a),多年平均值为3 006 MJ·mm/(hm2·h·a);各子流域的年均降雨侵蚀力差异较大,其中乌江子流域最大,为5 055 MJ·mm/(hm2·h·a),金沙江子流域最小(1 560 MJ·mm/(hm2·h·a)),不足乌江子流域的1/3。各子流域降雨侵蚀力的极值比大小嘉陵江 > 岷江 > 乌江 > 金沙江。长江上游流域以及子流域输沙量在1956~2010年间均呈总体下降趋势,各子流域年均输沙量大小金沙江 > 嘉陵江 > 岷江 > 乌江。降雨侵蚀力变化对长江上游输沙量变化贡献率为7%,对岷江、嘉陵江、乌江子流域输沙量变化的贡献率分别为36%、20%、9%。总体来说,降雨对长江上游输沙量变化的影响不如人类活动的影响大。

关键词: 输沙量, 降雨侵蚀力, 双累积曲线, 子流域, 长江上游

Abstract: Rainfall erosivity is one of the most important factors influencing riverine sediment load. However, riverine sediment load in response to rainfall erosivity change is not well understood in the upper Yangtze Basin. Based on the annual sediment load and daily rainfall data from 1956 to 2010 in the upper Yangtze Basin, we presented a quantitative estimate of changes in riverine sediment load in response to basin rainfall erosivity in the study area. The turning point of each subbasin was determined using double-mass curve and the critical years for subbasins of Jinsha, Min, Jialing, Wu and the upper Yangtze are 1999, 1993, 1985, 1984, and 1991 respectively. The effects of the basin rainfall erosivity change on the riverine sediment load were studied using linear regression analysis, and the contribution rates were estimated subbasin by subbasin. The result indicated that annual rainfall erosivity was relatively lower in the upper Yangtze Basin, with a value of 3 006 MJ·mm/(hm2·h·a), and there were great differences between the subbasins, the maximum of 5 055 MJ·mm/(hm2·h·a) appeared in the Wu subbasin, and the minimum of 1 560 MJ·mm/(hm2·h·a) in the Jinsha subbasin was less than one third of that in the Wu subbasin. The extremes ratios were sequenced as Jialing subbasin, Min subbasin, Wu subbasin, Jinsha subbasin. The annual sediment load was trending downward from 1956 to 2010 both in the upper Yangtze Basin and the subbasins, especially in the upper Yangtze Basin and Jialing subbasin where proved to has decreased dramatically. The upper Yangtze basin had an annual sediment load of 428 million tons, while subbasins of Jinsha, Min, Jialing and Wu varied in annual sediment load of 239 million t, 45 million t, 104 million t and 24 million t respectively. The contribution rate of rainfall erosivity on the sediment load variation in the upper Yangtze basin was 7%, and 36%, 20%, 9% for Min, Jialing, and Wu subbasins, respectively. But the increased rainfall erosivity of Jinsha subbasin did not decrease sediment load, therefore, it can be concluded that the decrease of sediment load of Jinsha subbasin was not mainly caused by rainfall. Generally speaking, rainfall has less influence on the sediment load change in the upper Yangtze than that of human activities.

Key words: sediment load, rainfall erosivity, double-mass curve, subbasin, the upper Yangtze

中图分类号: 

  • S157.1
[1] SYVITSKI J P M,VÖRÖSMARTY C J,KETTNER A J,et al.Impact of humans on the flux of terrestrial sediment to the global coastal ocean[J].Science,2005,308(5720): 376-380.
[2] WALLING D E.Human impact on land-ocean sediment transfer by the world's rivers[J].Geomorphology,2006,79(3/4): 192-216.
[3] DAI S B,YANG S L,LI M.The sharp decrease in suspended sediment supply from China's river to the sea: anthropogenic and natural causes[J].Hydrological Science Journal,2009,54(1): 135-146.
[4] LU X X,RAN L S,LIU S,et al.Sediment loads response to climate change: A preliminary study of eight large Chinese rivers[J].International Journal of Sediment Research,2013,28(1): 1-14.
[5] 第宝锋,崔 鹏,黄 胜,等.近50年金沙江干热河谷区泥沙变化及影响因素分析——以云南省元谋县为例[J].中国水土保持科学,2006,4(5):20-24,34.
[6] 张家其,龚 箭,吴宜进.基于日降雨数据的湖北省降雨侵蚀力初步分析[J].长江流域资源与环境,2014,23(2):274-280.
[7] 张洪江.土壤侵蚀原理[M].北京:中国林业出版社,2008:53.
[8] 章文波,付金生.不同类型雨量资料估算降雨侵蚀力[J].资源科学,2003,25(1):35-41.
[9] 姜 超.三峡库区王家桥流域降雨与侵蚀产沙关系研究[D].武汉:华中师范大学硕士学位论文,2013.
[10] 张信宝,文安邦.长江上游干流和支流河流泥沙近期变化及其原因[J].水利学报,2002(4):56-59.
[11] 韦 杰,贺秀斌.流域侵蚀产沙人类活动影响指数研究——以长江上游为例[J].地理研究,2012,31(12): 2259-2269.
[12] 谢 云,刘宝元,章文波.侵蚀性降雨标准研究[J].水土保持学报,2000,14(4):6-11.
[13] 杨子生.滇东北山区坡耕地土壤流失方程研究[J].水土保持通报,1999,19(1):1-9.
[14] 宋凤军,穆兴民,白 桦.嘉陵江流域输沙量演变规律分析[J].水土保持研究,2012,19(5):65-69.
[15] 柳莎莎.气候变化和人类活动对现代黄河输沙量影响的甄别[D].青岛:中国海洋大学硕士学位论文,2013.
[16] PENG J,CHEN S L,DONG P.Temporal variation of sediment load in the Yellow River basin,China,and its impacts on the lower reaches and the river delta[J].Catena,2010,83(2/3):135-147.
[17] 许炯心.长江上游干支流近期水沙变化及其与水库修建的关系[J].山地学报,2009,27(4):385-393.
[18] 李龙成,陈光兰,岑 静,等.长江上游岷江流域水沙变化特征分析[J].人民长江,2008,32(20):42-44,49.
[19] 许炯心.人类活动和降水变化对嘉陵江流域侵蚀产沙的影响[J].地理科学,2006,26(4):432-437.
[20] 熊亚兰,张科利,杨光檄,等.乌江流域水沙特性变化分析[J].生态环境,2008,17(15):1942-1947.
[1] 祁海霞, 王晓玲, 李银娥, 白永清. 长江上游中小洪水天气学机理分析及致洪特征[J]. 长江流域资源与环境, 2016, 25(Z1): 83-94.
[2] 赵平伟, 郭萍, 李成武, 李立印, 张俊凯, 李屏, 邓辉敏. 云南不同量级降雨下的降雨侵蚀力特征分析[J]. 长江流域资源与环境, 2015, 24(12): 2135-2141.
[3] 陈璇, 张萍萍, 田刚, 董良鹏, 韦惠红, 徐卫立, 岳岩裕, 车钦. 长江上游流域大洪水天气分型特征分析[J]. 长江流域资源与环境, 2015, 24(12): 2142-2152.
[4] 彭俊. 1950年以来鄱阳湖流域水沙变化规律及影响因素分析[J]. 长江流域资源与环境, 2015, 24(10): 1751-1761.
[5] 段辛斌, 田辉伍, 高天珩, 刘绍平, 王珂, 陈大庆. 金沙江一期工程蓄水前长江上游产漂流性卵鱼类产卵场现状[J]. 长江流域资源与环境, 2015, 24(08): 1358-1365.
[6] 雷娟, 梁阳阳, 隋晓云, 陈毅峰. 长江上游支流老河沟鱼类群落结构的时空格局[J]. 长江流域资源与环境, 2015, 24(07): 1126-1132.
[7] 李凌琪, 熊立华, 江聪, 张洪刚. 气温对长江上游巴塘站年径流的影响分析[J]. 长江流域资源与环境, 2015, 24(07): 1142-1149.
[8] 朱明勇, 党海山, 谭淑端, 陈正洪, 张全发. 湖北丹江口水库库区降雨侵蚀力特征[J]. 长江流域资源与环境, 2009, 18(9): 837-.
[9] 许全喜| 张小峰| 袁, 晶. 长江上游河流输沙量时间序列跃变现象研究[J]. 长江流域资源与环境, 2009, 18(6): 555-.
[10] 何云玲. 漫湾电站库区降雨侵蚀力时空变化[J]. 长江流域资源与环境, 2009, 18(1): 66-.
[11] 段辛斌,刘绍平,熊飞,陈大庆,, 杨如恒, 池成贵5, 穆天荣6. 长江上游干流春季禁渔前后三年渔获物结构和生物多样性分析[J]. 长江流域资源与环境, 2008, 17(6): 878-878.
[12] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335-339.
[13] 张晓平,樊 杰. 长江上游生态脆弱区生态屏障建设与产业发展战略研究——以昭通市为例[J]. 长江流域资源与环境, 2006, 15(3): 310-314.
[14] 何易平, 马泽忠, 谢 洪, 钟敦伦. 长江上游地区不同土地利用方式对山地灾害的敏感性分析——以金沙江一级支流小江流域为例[J]. 长江流域资源与环境, 2005, 14(4): 528-533.
[15] 应 铭,李九发,万新宁,沈焕庭. 长江大通站输沙量时间序列分析研究[J]. 长江流域资源与环境, 2005, 14(1): 81-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 曾慧卿. 近40年气候变化对江西自然植被净第一性生产力的影响[J]. 长江流域资源与环境, 2008, 17(2): 227 .
[3] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[4] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[5] 徐祖信,叶建锋. 前置库技术在水库水源地面源污染控制中的应用[J]. 长江流域资源与环境, 2005, 14(6): 792 -795 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 张青青,张世熔,李婷,张林,林晓利,. 基于多元数据的景观格局演变及其影响因素——以流沙河流域宜东段为例[J]. 长江流域资源与环境, 2006, 15(Sup1): 125 -130 .
[9] 周国忠,冯海霞. 浙江省旅游资源地区差异研究[J]. 长江流域资源与环境, 2006, 15(2): 157 -163 .
[10] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .