长江流域资源与环境 >> 2016, Vol. 25 >> Issue (Z1): 83-94.doi: 10.11870/cjlyzyyhj2016Z1012
祁海霞1, 王晓玲1, 李银娥1, 白永清2
QI Hai-xia1, WANG Xiao-ling1, LI Yin-e1, BAI Yong-qing2
摘要: 基于1981~2012年长江上游128个中小洪水历史个例及NCEP/NCAR再分析资料,采用普查及天气学分型方法,建立了纬向型、经向型、偏东气流型以及两高之间型4种致洪降水天气学概念模型,研究了各天气型致洪降水发生机理及相应中小洪水特征。得到以下结论:纬向型中高纬环流相对平直多波动,伴有明显冷平流南下,地面锋面位置略偏北。该类型强降水过程多,强度大,持续时间长,对应中小洪水多为双峰或多峰型,平均洪峰流量、过程增幅最强,洪水过程时间也最长。经向型环流中高纬贝加尔湖和东北地区为深厚低槽,中低层常伴有暖式切变线或低涡发展,中上层急流出口处的辐散以及冷平流四类型中最强。该类型雨带多呈东北-西南走向,中小洪水一般以单峰为主,其洪峰流量及过程增幅均较大,造成的洪水涨水较快,过程时间最短。纬向和经向型均为全流域降水型,但在金沙江北部、岷沱江、嘉陵江以及宜宾-宜昌常出现较高频次的60 mm以上较强面雨量。偏东气流型副高与热带气旋外围环流汇合北进,其强降水前后冷暖平流变化不明显,受地形强迫抬升影响,最易产生准静止型、团状、突发性强降水。该类型中小洪水以单峰为主,涨水快,洪峰流量及过程增幅均最小,强降水主要分布在嘉陵江和岷沱江两大流域。两高之间型多为“鞍”型场的环流配置,青藏高压与副高在流域上空形成南北向切变线,其动力和水汽条件均较弱。该类型降水强度较弱,稳定少动,累积降水量较大,洪水以单峰为主,双峰偶有发生,其洪峰流量、过程增幅均较大,洪水过程时间较长,强降水多位于岷沱江、嘉陵江和宜宾-重庆中部流域。
中图分类号:
[1] 范可旭, 徐长江. 乌江洪水与长江三峡洪水遭遇研究[J]. 水文, 2010, 30(4):63-65.[FAN K X, XU C J. Research on meeting of floods from Wujiang river and three gorges[J]. Journal of China Hydrology, 2010, 30(4):63-65.] [2] CHEN W, ZHI X F. Comparisons of the west Pacific subtropical high and the South Asia high between NCEP/NCAR and ECMWF reanalysis datasets[J]. Journal of Tropical Meteorology, 2008, 14(2):121-124. [3] 张玲, 智协飞. 南亚高压和西太副高位置与中国盛夏降水异常[J]. 气象科学, 2010, 30(4):438-444.[ZHANG L, ZHI X F. South Asian high and the subtropical western Pacific high and its relation to the mid-summer precipitation anomalies over China[J]. Scientia Meteorologica Sinica, 2010, 30(4):438-444.] [4] KUO Y H, CHENG L S, ANTHES R A. Mesoscale analyses of the Sichuan flood catastrophe, 11-15 July 1981[J]. Monthly Weather Review, 1986, 114(11):1984-2003. [5] CHEN Y L, CHEN X A, CHEN S, et al. A numerical study of the low-level jet during TAMEX IOP 5[J]. Monthly Weather Review, 1997, 125(10):2583-2604. [6] 慕建利, 李泽椿, 李耀辉, 等. 高原东侧特大暴雨过程中秦岭山脉的作用[J]. 高原气象, 2009, 28(6):1282-1290.[MU J L, LI Z C, LI Y H, et al. Effect of Qinling mountains of a extremely heavy rain-storm process on the east side of Qinghai-Xizang plateau[J]. Plateau Meteorology, 2009, 28(6):1282-1290.] [7] 陈鹏, 徐海明, 林永辉. 涡度收支与潜热释放对西南低涡形成的作用[J]. 大气科学学报, 2014, 37(5):575-584.[CHEN P, XU H M, LIN Y H. The influence of low-level jet and latent heat release on the formation of a southwest vortex[J]. Transactions of Atmospheric Sciences, 2014, 37(5):575-584.] [8] HOBBS P V, EASTER R C, FRASER A B. A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain:part Ⅱ. Microphysics[J]. Journal of the Atmospheric Sciences, 1973, 30(5):813-823. [9] WANG W, KUO Y H, WARNER T T. A diabatically driven mesoscale vortex in the lee of the Tibetan Plateau[J]. Monthly Weather Review, 1993, 121(9):2542-2561. [10] 廖菲, 洪延超, 郑国光. 地形对降水的影响研究概述[J]. 气象科技, 2007, 35(3):309-316.[LIAO F, HONG Y C, ZHENG G G. Review of orographic influences on surface precipitation[J]. Meteorological Science and Technology, 2007, 35(3):309-316.] [11] 卢萍, 翟丹华, 李英, 等. 影响重庆暴雨的三类西南低涡浅析[J]. 热带气象学报, 2014, 30(4):736-746.[LU P, ZHAI D H, LI Y, et al. Analysis of three kinds of southwest vortexes influencing rainstorms in Chongqing city[J]. Journal of Tropical Meteorology, 2014, 30(4):736-746.] [12] 张一平, 乔春贵, 梁俊平. 淮河上游短时强降水天气学分型与物理诊断量阈值初探[J]. 暴雨灾害, 2014, 33(2):129-138.[ZHANG Y P, QIAO C G, LIANG J P. Tentative discussion on synoptic type and physical diagnostic threshold of short-time strong precipitation in upper reaches of the Huaihe River[J]. Torrential Rain and Disasters, 2014, 33(2):129-138.] [13] 周慧, 杨令, 刘志雄, 等. 湖南省大暴雨时空分布特征及其分型[J]. 高原气象, 2013, 32(5):1425-1431.[ZHOU H, YANG L, LIU Z X, et al. Characteristics of temporal-spatial distributions of heavy rainstorm in Hunan and its typing[J]. Plateau Meteorology, 2013, 32(5):1425-1431.] [14] 丁治英, 张兴强, 何金海, 等. 非纬向高空急流与远距离台风中尺度暴雨的研究[J]. 热带气象学报, 2001, 17(2):144-152.[DING Z Y, ZHANG X Q, HE J H, et al. The study of storm rainfall caused by interaction between the non-zonal high level jet streak and the far distant typhoon[J]. Journal of Tropical Meteorology, 2001, 17(2):144-152.] [15] 王黎娟, 高辉, 刘伟辉. 西南季风与登陆台风耦合的暴雨增幅诊断及其数值模拟[J]. 大气科学学报, 2011, 34(6):662-671.[WANG L J, GAO H, LIU W H. Diagnosis and numerical simulation of increased torrential rainfall associated with a landfalling typhoon coupled with Southwest monsoon[J]. Transactions of Atmospheric Sciences, 2011, 34(6):662-671.] [16] 陈忠明, 黄福均, 何光碧. 热带气旋与西南低涡相互作用的个例研究I.诊断分析[J]. 大气科学, 2002, 26(3):352-360.[CHEN Z M, HUANG F J, HE G B. A case study of interactions between the tropical cyclone and the Southwest vortex. Part I:diagnostic analysis[J]. Chinese Journal of Atmospheric Sciences, 2002, 26(3):352-360.] [17] 康岚, 郝丽萍, 罗玲, 等. 1002号台风对四川盆地大暴雨的影响分析[J]. 热带气象学报, 2013, 29(1):169-176.[KANG L, HAO L P, LUO L, et al. The analysis of the effect of typhoon 1002 on storm rainfall in Sichuan basin[J]. Journal of Tropical Meteorology, 2013, 29(1):169-176.] [18] DUAN W L, HE B, TAKARA K, et al. Anomalous atmospheric events leading to Kyushu's flash floods, July 11-14, 2012[J]. Natural Hazards, 2014, 73(3):1255-1267. [19] SEMENOV E K, SOKOLIKHINA N N, TATARINOVICH E V, et al. Synoptic conditions of the formation of a catastrophic flood on the Amur River in 2013[J]. Russian Meteorology and Hydrology, 2014, 39(8):521-527. [20] KAHANA R, ZIV B, ENZEL Y, et al. Synoptic climatology of major floods in the Negev Desert, Israel[J]. International Journal of Climatology, 2002, 22(7):867-882. [21] COLLINS M J, KIRK J P, PETTIT J, et al. Annual floods in New England (USA) and Atlantic Canada:synoptic climatology and generating mechanisms[J]. Physical Geography, 2014, 35(3):195-219. [22] 肖中, 赵东, 曹磊. 长江上游"10.7"洪水及寸滩站水位流量关系分析[J]. 人民长江, 2010, 41(21):39-41.[XIAO Z, ZHAO D, CAO L. Analysis on "10.7" flood of upstream Yangtze River and level-discharge relation at Cuntan hydrological station[J]. Yangtze River, 2010, 41(21):39-41.] [23] 张洪刚, 郭海晋, 欧应钧. 长江流域洪水地区组成与遭遇规律研究[J]. 人民长江, 2013, 44(10):62-65, 87.[ZHANG H G, GUO H J, OU Y J. Research on composition and encounter laws of flood in Yangtze River Basin[J]. Yangtze River, 2013, 44(10):62-65, 87.] [24] 熊莹. 长江上游干支流洪水组成与遭遇研究[J]. 人民长江, 2012, 43(10):42-45.[XIONG Y. Research on flood composition and encounter of main streams and tributaries in upper Yangtze River[J]. Yangtze River, 2012, 43(10):42-45.] |
[1] | 陈璇, 张萍萍, 田刚, 董良鹏, 韦惠红, 徐卫立, 岳岩裕, 车钦. 长江上游流域大洪水天气分型特征分析[J]. 长江流域资源与环境, 2015, 24(12): 2142-2152. |
[2] | 黄小燕, 韦杰. 长江上游流域降雨侵蚀力变化对河流输沙量的影响[J]. 长江流域资源与环境, 2015, 24(09): 1606-1612. |
[3] | 段辛斌, 田辉伍, 高天珩, 刘绍平, 王珂, 陈大庆. 金沙江一期工程蓄水前长江上游产漂流性卵鱼类产卵场现状[J]. 长江流域资源与环境, 2015, 24(08): 1358-1365. |
[4] | 雷娟, 梁阳阳, 隋晓云, 陈毅峰. 长江上游支流老河沟鱼类群落结构的时空格局[J]. 长江流域资源与环境, 2015, 24(07): 1126-1132. |
[5] | 李凌琪, 熊立华, 江聪, 张洪刚. 气温对长江上游巴塘站年径流的影响分析[J]. 长江流域资源与环境, 2015, 24(07): 1142-1149. |
[6] | 许全喜| 张小峰| 袁, 晶. 长江上游河流输沙量时间序列跃变现象研究[J]. 长江流域资源与环境, 2009, 18(6): 555-. |
[7] | 段辛斌,刘绍平,熊飞,陈大庆,, 杨如恒, 池成贵5, 穆天荣6. 长江上游干流春季禁渔前后三年渔获物结构和生物多样性分析[J]. 长江流域资源与环境, 2008, 17(6): 878-878. |
[8] | 张晓平,樊 杰. 长江上游生态脆弱区生态屏障建设与产业发展战略研究——以昭通市为例[J]. 长江流域资源与环境, 2006, 15(3): 310-314. |
[9] | 何易平, 马泽忠, 谢 洪, 钟敦伦. 长江上游地区不同土地利用方式对山地灾害的敏感性分析——以金沙江一级支流小江流域为例[J]. 长江流域资源与环境, 2005, 14(4): 528-533. |
[10] | 周廷刚,张其良. 长江上游水土流失成因及治理模式研究——以重庆市城口县为例[J]. 长江流域资源与环境, 2004, 13(1): 89-93. |
[11] | 谢 洪,钟敦伦,李 泳,韦方强. 长江上游泥石流灾害的特征[J]. 长江流域资源与环境, 2004, 13(1): 94-99. |
|