长江流域资源与环境 >> 2015, Vol. 24 >> Issue (10): 1786-1792.doi: 10.11870/cjlyzyyhj201510022

• 生态环境 • 上一篇    下一篇

基于IPCC方法的湖南省温室气体排放核算及动态分析

马彩虹1,2, 赵晶3, 谭晨晨4   

  1. 1. 宁夏大学资源环境学院, 宁夏 银川 750000;
    2. 陕西理工学院秦岭与蜀道地理研究所, 陕西 汉中 723001;
    3. 西安石油大学心理研究所, 陕西 西安 710065;
    4. 陕西师范大学旅游与环境学院, 陕西 西安 710062
  • 收稿日期:2014-10-30 修回日期:2015-04-12 出版日期:2015-10-20
  • 作者简介:马彩虹(1974~),女,副教授,博士,主要从事资源环境评价与GIS/RS应用、生态经济与区域可持续发展研究.E-mail:mchyanni@163.com
  • 基金资助:
    国家社会科学基金项目"中国丝绸之路经济带生态文明建设评价与路径研究"(14XKS019)

ACCOUNTING AND DYNAMIC ANALYSIS OF GREENHOUSE GAS EMISSION IN HUNAN PROVINCE BASED ON THE IPCC METHOD

MA Cai-hong1,2, ZHAO Jing3, TAN Chen-chen4   

  1. 1. School of Resource and Environment, Ningxia University, Yinchuan 750000, China;
    2. Qinling and Intones Geography Research Institute, Shaanxi University of Technology, Hanzhong 723001, China;
    3. Institute of Psychology, Xi'an Shiyou University, Xi'an 710062, China;
    4. College of Tourism and Environmental, Shaanxi Normal University, Xi'an 710062, China
  • Received:2014-10-30 Revised:2015-04-12 Online:2015-10-20

摘要: 为温室气体减排提供决策参考,基于IPCC和中国《省级温室气体清单编制指南》,核算了1995~2011年湖南省温室气体排放,并对其动态作了分析。结果表明: 2011年湖南省温室气体排放总量为594.7 Mt CO2e,主要温室气体CO2、CH4和N2O的排放量分别为471.3、100.8和22.6 Mt CO2e,占排放总量的比例依次为79.25%、16.95%和3.79%。能源消费是温室气体排放的主要来源,2011年的排放量达421.5 Mt CO2e,占排放总量的70.87%。林业呈现为碳汇效应,2011年的值为18.2 Mt CO2e,消解温室气体排放量的3.06%。研究时段内温室气体从241.7 Mt CO2e增长为594.7 Mt CO2e,年均增长率达9.12%,可分为3个阶段,其中,1995~1999年波动降低,1999~2003年缓慢上升,2003~2011年快速增长,变化率依次为-3.32%、4.69%和17.37%。能源利用效率明显提高,万元GDP温室气体排放量由10.64 t CO2e/万元减少到2.93 t CO2e/万元,年均减少7.75%,但人均温室气体排放量由3.65 t CO2e增加到8.07 t CO2e,年均增长5.08%,减排压力较大。

关键词: 气候变化, 温室气体, IPCC, 湖南省

Abstract: Global warming caused by greenhouse gas emission may cause severe environmental and social problems. As climate problem is becoming increasingly serious, the preparation of greenhouse gas emissions inventory has become important basic work of research on greenhouse gas. Some researches hve been undertaken on greenhouse gas accounting and some progresses have been made. However, there are many shortcomings in this research field. The main problem is that current research is mainly focused on carbon emission, particularly carbon emission from fossil fuel combustion, and is less involved in carbon fixation and ways of assessing regional carbon emission levels. Although much research were related to carbon emission, the results are difficult to compare owing to inconsistent research methods and standards. Based on the IPCC Guidelines for National Greenhouse Gas Inventories and the Provincial Greenhouse Gas Inventory Preparation Guide of China, this paper analyzed the dynamic of greenhouse gas emission in Hunan Province during 1995-2011. The results showed that, the component of greenhouse gas emissions wass predominant with CO2, with a proportion of 79.25% to the total emissions, and the second part is CH4 and the third part is N2O with a proportion of 16.95% and 3.79%, respectively. Energy consumption is the main reason for the increase in greenhouse gas emissions in Hunan Province, and forestry carbon sequestration ability needs to improve. Greenhouse gas emissions by energy consumption, agricultural production, waste treatment and cement production was 421.5、641.6、592.2、498.8Mt CO2e, of which accounted for 70.87%, 10.79%, 9.96% and 8.39%, respectively. Forestry performance for carbon sequestration effect with a 18.2Mt CO2e, of which fixed 3.06% of the total greenhouse gas emissions. From 1995 to 2011, the greenhouse gas emissions increased from 241.7 to 594.7Mt CO2e in Hunan Province, ant its fluctuations can be divided into the slowly decrease stage(1995-1999), the slow rise stage (1999-2003) and the rapid growth stage (2003-2011). The greenhouse gas emission per 10000 Yuan GDP reduced from 10.64 to 2.93, indicating that carbon reduction technology has made great progress and energy efficiency has been greatly improved in Hunan Province. However, the greenhouse gas emission per capita had increased very quickly from 3.65 to 8.07 t CO2e. The greenhouse gas emission increasing trend cannot be ignored. So it is urgent to reduce greenhouse gas emissions. Countermeasures for greenhouse gas emission reduction in Hunan province were put forward at the paper. First, actively explore new energy and to enhance the energy utilization efficient. Secondly, increase the vegetation cover rate to increase the carbon sequestered ability in vegetation. Thirdly, advocate low carbon life. Fourthly, accelerate the development of low carbon economy and green economy.

Key words: climate change, greenhouse gas, IPCC, Hunan Province

中图分类号: 

  • Q148
[1] 李 晴,唐立娜,石龙宇.城市温室气体排放清单编制研究进展[J].生态学报,2013,33(2):367-373.
[2] Change IPOC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[EB/OL].[2013-04-28]. http://www. ipcc-nggip. iges. or. jp./public/2006gl/index. html, 2006.
[3] UVAROVA N E, KUZOVKIN V V, PARAMONOV S G, et al. The improvement of greenhouse gas inventory as a tool for reduction emission uncertainties for operations with oil in the Russian Federation[J]. Climatic Change, 2014, 124(3):535-544.
[4] ROGER A,PIELKE J. An evaluation of the targets and timetables of proposed Australian emissions reduction policies[J]. Environmental Science & Policy, 2011,14(1):20-27.
[5] WIEDMANN T, BARRETT J. A greenhouse gas footprint analysis of UK Central Government,1990-2008[J]. Environmental Science & Policy,2011,14(8):1041-1051.
[6] PENTEADO R,CAVALLI M,MAGNANO E.Application of the IPCC model to a Brazilian landfill:First results[J]. Energy Policy,2012,42:551-556.
[7] SEYMORE R, INGLESI-LOTZ R, BLIGNAUT J. A greenhouse gas emissions inventory for South Africa:A comparative analysis[J]. Renewable and Sustainable Energy Reviews, 2014, 34:371-379.
[8] HAYASHI K, MAKINO N, SHOBATAKE K, et al. Influence of scenario uncertainty in agricultural inputs on life cycle greenhouse gas emissions from agricultural production systems:the case of chemical fertilizers in Japan[J]. Journal of Cleaner Production, 2014, 73:109-115.
[9] MCKECHNIE J, COLOMBO S, MACLEAN H L. Forest carbon accounting methods and the consequences of forest bioenergy for national greenhouse gas emissions inventories[J]. Environmental Science & Policy, 2014, 44:164-173.
[10] 陈其颢,朱 林,王 圣.江苏省温室气体排放清单基础研究[J].环境科学与管理,2012,37(10):1-4.
[11] 杨制国. 内蒙古自治区温室气体排放清单及核算研究[D].西安:陕西师范大学硕士学位论文,2013.
[12] 吴宜珊. 宁夏回族自治区温室气体排放清单及核算研究[D].西安:陕西师范大学硕士学位论文,2013.
[13] 陈秋红. 湖南省碳源与碳汇变化的时序分析[J].长江流域资源与环境,2012, 21(6):766-772.
[14] GENG Y, PENG C, TIAN M. Energy use and CO2 emission inventories in the four municipalities of China[J]. Energy Procedia, 2011, 5:370-376.
[15] 覃小玲,卢 清,郑君瑜.深圳市温室气体排放清单研究[J].环境科学研究,2012,25(12):1378-1386.
[16] 杨 谨,鞠丽萍,陈 彬.重庆市温室气体排放清单研究与核算[J].中国人口·资源与环境,2012,22(3):63-69.
[17] 贺建林, 李 慢. 湖南省产业结构变动与能源消费的关系研究——基于经济减物质化的分析[J]. 湘潭大学学报:哲学社会科学版, 2011,35(5):82-86.
[1] 张文桐, 庞奖励, 周亚利, 黄春长, 查小春, 崔天宇. 湖北郧西县庹家湾剖面粒度组成特征及其环境意义[J]. 长江流域资源与环境, 2016, 25(12): 1910-1916.
[2] 曾毅, 彭佳捷, 麻战洪, 刘师师. 基于NUTSP的湖南省国土空间标准地域单元划分研究[J]. 长江流域资源与环境, 2016, 25(08): 1159-1166.
[3] 杨娜, 赵巧华, 闫桂霞, 黄琴. 气候变化和人类活动对丹江口入库径流的影响及评估[J]. 长江流域资源与环境, 2016, 25(07): 1129-1134.
[4] 付莲莲, 朱红根, 周曙东. 江西省气候变化的特征及其对水稻产量的贡献——基于“气候-经济”模型[J]. 长江流域资源与环境, 2016, 25(04): 590-598.
[5] 丁文荣. 环洱海地区气候变化特征研究[J]. 长江流域资源与环境, 2016, 25(04): 599-605.
[6] 史军, 穆海振. 大城市应对气候变化的可持续发展研究——以上海为例[J]. 长江流域资源与环境, 2016, 25(01): 1-8.
[7] 张秀琴, 王亚华. 中国水资源管理适应气候变化的研究综述[J]. 长江流域资源与环境, 2015, 24(12): 2061-2068.
[8] 刘佳, 马振峰, 杨淑群, 杨小波, 李小兰. 1961~2010年大渡河流域极端降水事件变化特征[J]. 长江流域资源与环境, 2015, 24(12): 2166-2176.
[9] 李 灿| 陈正洪. 武汉市主要年气候要素及其极值变化趋势[J]. 长江流域资源与环境, 2010, 19(01): 37-.
[10] 刘晓冉, 杨茜, 程炳岩, 张天宇. 三峡库区21世纪气候变化的情景预估分析[J]. 长江流域资源与环境, 2010, 19(01): 42-.
[11] 吴必文, 温华洋, 叶朗明, 徐光清. 安徽地区近45年蒸发皿蒸发量变化特征及影响因素初探[J]. 长江流域资源与环境, 2009, 18(7): 620-.
[12] 卜红梅 党海山 张全发. 汉江上游金水河流域近50年气候变化特征及其对生态环境的影响[J]. 长江流域资源与环境, 2009, 18(5): 459-.
[13] 叶正伟, 朱国传. 洪泽湖流域洪涝灾害演变趋势及其与El Nio事件关系[J]. 长江流域资源与环境, 2009, 18(11): 1086-.
[14] 陶 涛, 信昆仑, 刘遂庆. 气候变化下21世纪上海长江口地区降水变化趋势分析[J]. 长江流域资源与环境, 2008, 17(2): 223-223.
[15] 曾慧卿. 近40年气候变化对江西自然植被净第一性生产力的影响[J]. 长江流域资源与环境, 2008, 17(2): 227-227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .