长江流域资源与环境 >> 2016, Vol. 25 >> Issue (04): 599-605.doi: 10.11870/cjlyzyyhj201604009

• 自然资源 • 上一篇    下一篇

环洱海地区气候变化特征研究

丁文荣   

  1. 云南师范大学旅游与地理科学学院, 云南 昆明 650500
  • 收稿日期:2015-08-03 修回日期:2015-11-25 出版日期:2016-04-20
  • 作者简介:丁文荣(1979~),男,副教授,博士,主要从事水文水资源方面的研究工作.E-mail:dingwenrong@163.com
  • 基金资助:
    国家自然科学基金项目“云南环洱海地区乡村聚落空间演变机理与优化研究”(41261044);国家自然科学基金项目“横断山区典型干旱河谷气候变化异常与LUCC的水文过程响应机理研究”(41101099);云南省社会发展科技计划(云南城镇上山的地理环境系统背景研究.NO:(2012CA024));云南省教育厅重点项目(金沙江下游龙川江流域水沙输移过程及机制研究.NO:(2015Z056)

A STUDY ON THE CHARACTERISTICS OF CLIMATE CHANGE AROUND THE ERHAI AREA, CHINA

DING Wen-rong   

  1. College of Tourism and Geography Science, Yunnan Normal University, Kunming 650500, China
  • Received:2015-08-03 Revised:2015-11-25 Online:2016-04-20
  • Supported by:
    National Natural Science Foundation of China (On Spatial Evolution Mechanism and Its Optimization of Rural Settlement in Erhai Lake Ring Area in Yunnan (41261044); National Natural Science Foundation of China (Research on the hydrological process response to climate change and LUCC in a typical dry valley of Hengduan Mountain (41101099); Social development science and technology project of Yunnan Province (Study on the background of the geographical environment system of the mountain areaurban in Yunnan. NO: (2012CA024); Key projects of Education Department of Yunnan Province (Study on the water and sediment transportation mechanism in Longchuanjiang basin of Jinsha River. NO: (2015Z056)

摘要: 环洱海地区是云南省具有高原湖泊生态脆弱区、民族文化多元融合区和乡村经济发展活跃区等多重叠合特征的典型区域,是全球气候变化影响的敏感区和脆弱区。以环洱海地区1951~2014年6个基本站点的逐年平均气温、极端最高气温、极端最低气温、降水量、最大日降水量和日降水量≥0.1 mm日数资料为基础。采用线性倾向估计、Mann-Kendall趋势检验、Morlet小波分析和R/S分析等方法,研究了环洱海地区气候变化规律。结果发现:自1951年以来,环洱海地区年均气温和极端最低气温呈现出升高的趋势,而极端最高气温则呈现降低的趋势,变化速率分别为0.07℃/10 a、0.03℃/10 a和-0.14℃/10 a,对于年降水量、最大日降水量和降水日数而言,三者均为减少趋势,速率分别为-12.85 mm/10 a、-1.09mm/10 a和-1.73 d/10 a;环洱海地区年均气温、极端最高和极端最低气温均没有发生突变,年降水量和降水日数在2010年发生了一次减少突变,而最大日降水量则没有检测到突变的年份;环洱海地区年平均气温和年降水量在长时间尺度上的周期性变化最为显著,分别存在30 a和33 a左右的周期变化,并贯穿整个研究时段,而短时间尺度上的周期变化局域性特征突出;从未来演变趋势来看,年平均气温和极端最低气温将维持升温趋势,而极端最高气温则将持续降低趋势,年降水量继续减少的趋势未来将会逆转,但最大日降水量和降水日数两者将持续减少的概率更大。

关键词: 气候变化, 气温, 降水, 环洱海地区

Abstract: Around the Erhai region in Yunnan province as multiple composite characteristics of typical area, have plateau lakes ecologically fragile area, ethnic culture diversity area and rural economic development active region at the same time, and it is also a vulnerable area of climate change. The annual average temperature, extreme maximum temperature and extreme minimum temperature, precipitation, maximum daily precipitation and precipitation days over 0.1mm of six stations around the Erhai lake area from 1951 to 2014 data as the foundation data are adopted. By linear trend estimation, Mann-Kendall trend test, Morlet wavelet analysis and R/S analysis method, climate change law was studied. It showing that: since 1951, the annual temperature and extreme minimum temperature were showed a rising trend, while extreme maximum temperature showed reducing trends, the change rate were 0.07/10a, 0.03/10a and 0.14/10a, respectively. The annual precipitation, maximum daily precipitation and precipitation days, are reduced trend, the rate is 12.85mm/10a and 1.73days/10a respectively. Annual average temperature, extreme high and extreme low temperature changes were not mutate, annual precipitation and precipitation days in 2010 there was a mutation decrease, while the maximum daily precipitation detected no year of mutation; Around the Erhai lake regional annual average temperature and annual precipitation have long time scales of the most significant cyclical change, with 30 years and 33 years respectively; and throughout the study period, local characteristics of periodic change of the short time scale is outstanding. From the point of future evolution trend, the annual average temperature and extreme minimum temperature will keep warming trend, while the extreme maximum temperature will continue to reduce, and continue reduce trend to increase trend of annual precipitation probability is smaller, while the probability of both the maximum daily precipitation and precipitation days will continue reduce trend are significant.

Key words: Climate change, temperature, precipitation, around Erhai area

中图分类号: 

  • P463.1
[1] IPCC. Climate change 2013: the physical science basis. Working group I contribution to the IPCC fifth assessment report (Ar5). Final draft underlying scientific-technical assessment[R]. Cambridge: Cambridge University Press, 2013.
[2] NEMANI R R, KEELING C D, HASHIMOTO H. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003, 300(5625): 1560-1563.
[3] 葛全胜, 郑景云, 郝志新, 等. 过去2000年中国气候变化研究的新进展[J]. 地理学报, 2014, 69(9): 1248-1258. [GE Q S, ZHENG J Y, HAO Z X, et al. State-of-the-arts in the study of climate changes over China for the past 2000 years[J]. Acta Geographic Sinica, 2014, 69(9): 1248-1258.]
[4] 丁一汇. 中国气候变化: 科学、影响、适应及对策研究[M]. 北京: 中国环境科学出版社, 2009: 10-15. [DING Y H. Climate Change Research over China: Science, Impact, Adaptation and Strategy Policy[M]. Beijing: China Environmental Science Press, 2009: 10-15.]
[5] 程建刚, 王学锋, 范立张, 等. 近50年来云南气候带的变化特征[J]. 地理科学进展, 2009, 28(1): 18-24. [CHENG J G, WANG X F, FAN L Z, et al. Variations of Yunnan climatic zones in recent 50 years[J]. Progress in Geography, 2009, 28(1): 18-24.]
[6] 程建刚, 解明恩. 近50年云南区域气候变化特征分析[J]. 地理科学进展, 2008, 27(5): 19-26. [CHENG J G, XIE M E. The analysis of regional climate change features over Yunnan in recent 50 years[J]. Progress in Geography, 2008, 27(5): 19-26.]
[7] 黄慧君, 王永平, 李庆红. 洱海流域近50年气候变化特征及其对洱海水资源的影响[J]. 气象, 2013, 39(4): 436-442. [HUANG H J, WANG Y P, LI Q H. Climatic characteristics over Erhai Lake basin in the late 50 years and the impact on water resources of Erhai Lake[J]. Meteorological Monthly, 2013, 39(4): 436-442.]
[8] 沈吉, 杨丽原, 羊向东, 等. 全新世以来云南洱海流域气候变化与人类活动的湖泊沉积记录[J]. 中国科学 D辑地球科学, 2004, 34(2): 130-138.
[9] 周静, 王苏民, 吕静. 洱海地区一万多年以来气候环境演化的湖泊沉积记录[J]. 湖泊科学, 2003, 15(2): 104-111. [ZHOU J, WANG S M, LV J. Climatic and environmental changes from the sediment record of Erhai Lake over the past 10000 years[J]. Journal of Lake Sciences, 2003, 15(2): 104-111.]
[10] 张振克, 沈吉, 羊向东, 等. 近8ka来云南洱海湖泊沉积记录的气候变化与夏季印度季风强弱变化的关系[J]. 亚热带资源与环境学报, 2008, 3(3): 1-6. [ZHANG Z K, SHEN J, YANG X D, et al. Climate changes and indian monsoon variations recorded by the lacustrine sediments from Erhai Lake, Yunnan Province during the past 8ka[J]. Journal of Subtropical Resources and Environment, 2008, 3(3): 1-6.]
[11] PANDA D K, KUMAR A, MOHANTY S. Recent trends in sediment load of the tropical (Peninsular) river basins of India[J]. Global and Planetary Change, 2011, 75(3/4): 108-118.
[12] BURN D H, ELNUR M A H. Detection of hydrologic trends and variability[J]. Journal of Hydrology, 2002, 255(1/4): 107-122.
[13] 吴创收, 杨世伦, 黄世昌, 等. 1954-2011年间珠江入海水沙通量变化的多尺度分析[J]. 地理学报, 2014, 69(3): 422-432. [WU C S, YANG S L, HUANG S C, et al. Multi-scale variability of water discharge and sediment load in the Pearl River during 1954-2011[J]. Acta GeographicaSinica, 2014, 69(3): 422-432.]
[14] 王文圣, 丁晶, 李跃清. 水文小波分析[M]. 北京: 化学工业出版社, 2005.
[15] HURST H E, BLACK R. P, SIMAIKA Y M. Long-term storage: an experimental study[M]. London: Constable, 1965.
[16] 贺晋云, 张明军, 王鹏, 等. 近50年西南地区极端干旱气候变化特征[J]. 地理学报, 2011, 66(9): 1179-1190. [HE J Y, ZHANG M J, WANG P, et al. Climate characteristics of the extreme drought events in Southwest China during recent 50 years[J]. Acta Geographica Sinica, 2011, 66(9): 1179-1190.]
[17] 尤卫红. 气候变化的多尺度诊断分析和预测的多种技术方法研究[M]. 北京: 气象出版社, 1998: 9-20.
[18] MANDELBROT B B, WALLIS J R. Some long-run properties of geophysical records[J]. Water Resources Research, 1969, 5(2): 321-340.
[19] MANDELBROT B B, WALLIS J R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence[J]. Water Resources Research, 1969, 5(5): 967-988.
[1] 周毅, 吴华武, 贺斌, 李静, 段伟利, 王建锋, 童世贤. 长江水δ18O和δD时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(05): 678-686.
[2] 陈红. 长江中下游夏季极端降水事件频次的统计降尺度模拟与预估[J]. 长江流域资源与环境, 2017, 26(05): 771-777.
[3] 刘俸霞, 王艳君, 赵晶, 陈雪, 姜彤. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J]. 长江流域资源与环境, 2017, 26(05): 778-788.
[4] 潘欣, 尹义星, 王小军. 1960~2010年长江流域极端降水的时空演变及未来趋势[J]. 长江流域资源与环境, 2017, 26(03): 436-444.
[5] 叶明华, 汪荣明, 丁越, 束炯. 基于Copula相依函数的安徽省气温与降雨量相关性研究[J]. 长江流域资源与环境, 2017, 26(01): 110-117.
[6] 赵平伟, 郭萍, 李立印, 舒珺. SPEI及SPI指数在滇西南地区干旱演变中的对比分析[J]. 长江流域资源与环境, 2017, 26(01): 142-149.
[7] 张文桐, 庞奖励, 周亚利, 黄春长, 查小春, 崔天宇. 湖北郧西县庹家湾剖面粒度组成特征及其环境意义[J]. 长江流域资源与环境, 2016, 25(12): 1910-1916.
[8] 彭霞, 郭冰瑶, 魏宁, 佘倩楠, 刘敏, 象伟宁. 近60 a长三角地区极端高温事件变化特征及其对城市化的响应[J]. 长江流域资源与环境, 2016, 25(12): 1917-1926.
[9] 徐明, 王晓芳, 高琦, 汪小康, 赖安伟. 基于TRMM卫星资料揭示的长江流域梅雨季节降水日变化[J]. 长江流域资源与环境, 2016, 25(12): 1934-1944.
[10] 黄钰瀚, 张增信, 费明哲, 金秋. TRMM 3B42卫星降水数据在赣江流域径流模拟中的应用[J]. 长江流域资源与环境, 2016, 25(10): 1618-1625.
[11] 龚艳冰, 戴靓靓, 胡娜, 刘高峰, 张继国. 基于云推理和模糊逻辑关系模型的干旱等级预测方法研究[J]. 长江流域资源与环境, 2016, 25(08): 1273-1278.
[12] 杨娜, 赵巧华, 闫桂霞, 黄琴. 气候变化和人类活动对丹江口入库径流的影响及评估[J]. 长江流域资源与环境, 2016, 25(07): 1129-1134.
[13] 陈阿娇, 贺新光, 秦建新, 章新平. 长江流域近51a来日降水时空变异的多尺度特征[J]. 长江流域资源与环境, 2016, 25(05): 794-803.
[14] 翟菁, 刘慧娟, 黄勇, 邱学兴, 霍彦峰. 安徽省热对流短时强降水的判别与特征分析[J]. 长江流域资源与环境, 2016, 25(05): 837-844.
[15] 付莲莲, 朱红根, 周曙东. 江西省气候变化的特征及其对水稻产量的贡献——基于“气候-经济”模型[J]. 长江流域资源与环境, 2016, 25(04): 590-598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨 选. 国内外典型水治理模式及对武汉水治理的借鉴[J]. 长江流域资源与环境, 2007, 16(5): 584 .
[2] 李恒鹏,杨桂山,刘晓玫,万荣荣. 流域土地利用变化的长周期水文效应及管理策略[J]. 长江流域资源与环境, 2005, 14(4): 450 -455 .
[3] 廖顺宝,李泽辉. 四川省人口分布与土地利用的关系及人口数据空间化试验[J]. 长江流域资源与环境, 2004, 13(6): 557 -561 .
[4] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[5] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[6] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[7] 董林水, 张旭东, 周金星, 李冬雪. 青藏铁路沿线北段植被物种丰富度及盖度的动态变化[J]. 长江流域资源与环境, 2008, 17(4): 551 .
[8] 胡贤辉,张 霞,杨钢桥. 湖北省土地利用结构变化及其驱动机制分析[J]. 长江流域资源与环境, 2008, 17(1): 43 .
[9] 张 征,李 今,梁 威,吴振斌. 拟除虫菊酯杀虫剂对水生态系统的毒性作用[J]. 长江流域资源与环境, 2006, 15(1): 125 -130 .
[10] 赵沁娜 徐启新. 城市土地置换过程中土壤多环芳烃污染的健康风险评价[J]. 长江流域资源与环境, 2009, 18(3): 286 -290 .