长江流域资源与环境 >> 2016, Vol. 25 >> Issue (03): 439-444.doi: 10.11870/cjlyzyyhj201603010

• 生态环境 • 上一篇    下一篇

几种典型红壤模拟降雨条件下的泥沙特征研究

杨伟1,2, 张琪2,3, 李朝霞2, 张利超2,4, 蔡崇法2   

  1. 1. 湖北省水利水电科学研究院, 湖北 武汉 430070;
    2. 华中农业大学, 湖北 武汉 430070;
    3. 上海市园林科学研究所, 上海 200232;
    4. 江西省水土保持科学研究院, 江西 南昌 330029
  • 收稿日期:2014-09-14 修回日期:2014-12-19 出版日期:2016-03-20
  • 通讯作者: 张琪 E-mail:zhangqi1122@126.com
  • 作者简介:杨伟(1983~),男,博士,主要从事土壤侵蚀机理与应用研究. E-mail: yw.hbwri@gmail.com
  • 基金资助:
    国家自然科学基金项目(41171223,41401317)

ESTIMATING SEDIMENT CHARACTERS OF SEVERAL TYPICAL RED SOILS BY SIMULATED RAINFALL

YANG Wei1,2, ZHANG Qi2,3, LI Zhao-xia2, ZHANG Li-chao2,4, CAI Chong-fa2   

  1. 1. Hubei Water Resources Research Institute, Wuhan 430070, China;
    2. Huazhong Agricultural University, Wuhan 430070, China;
    3. Shanghai Landscape Gardening Research Institute, Shanghai 200232, China;
    4. Jiangxi Institute of Soil and Water Convesation, Nanchang 330029, China
  • Received:2014-09-14 Revised:2014-12-19 Online:2016-03-20
  • Supported by:
    the National Natural Science Foundation of China (Grant No. 41171223 and 41401317)

摘要: 泥沙是土壤侵蚀过程的产物,直接反映了土壤的侵蚀特征。本文利用人工模拟降雨,研究了南方几种典型母质发育红壤侵蚀泥沙的颗粒分布特征、不同粒级中胶结物质的种类和含量。研究结果表明,径流优先选择携带0.002~0.02 mm 颗粒,该级别颗粒占泥沙总量的26.68%~60.33%。粘粒含量高的第四纪粘土红壤,泥沙中粗颗粒含量较高,且多为较稳定的团聚体;沙粒和粉粒含量较高的页岩红壤和花岗岩红壤侵蚀泥沙中单粒含量较高,且泥沙分散后粉粒和粘粒的含量高于原土壤。花岗岩红壤侵蚀泥沙中Fed,Ald,Alo和Sio含量随泥沙粒径的增大而降低,而泥质页岩红壤和第四纪粘土红壤中,Fed,Ald,Alo含量随粒径增大而增加,因此其粗粒径泥沙具有较强的稳定性。侵蚀泥沙对有机质有富集作用,泥质页岩红壤和第四纪粘土红壤的粗颗粒对有机质的富集作用强于细颗粒。

关键词: 红壤, 模拟降雨, 泥沙颗粒, 平均质量直径, 氧化物, 有机质

Abstract: Sediment is the product of soil erosion, so it can reflect the characters of erosion process. In this study, six red soil samples, derived from three parent materials (Quaternary red clay, Shale and Granite) were selected and subjected to simulated rainfall experiment. The particle size distribution and cementing material of sediments were tested. From the compare of the physic-chemical properties of different sizes sediment, the main results as followed: Compared to the particle size distribution of test soils, there were more 0.002-0.02 mm particles in sediments, which occupied 26.68%-60.33% in sediments. It means that the runoff was preferred to transit particles between 0.002 mm to 0.02 mm. The proportion of 0.02-0.002 mm and < 0.002 mm particles were far greater than that in test soil from Shale and Granite while the proportion was lower than test soil from Quaternary red clay. After chemical dispersion treatment, the particle size distribution of sediment were different from the test soil, and there were more < 0.02 mm particles in sediments than test soils. The large particles (> 0.25 mm) in sediment from high-clay soils(derived from Quaternary red clay) is abundant, and most of which were stable aggregates. After chemical dispersion, there were more primary particles in sediments from high -sand soils (derived from Granite) and high-silt soils (derived from Shale) than in high-clay soils, and more clay and silt than test soils. The content of Fed, Ald, Alo and Sio decreased with the increase of particles size in sediments derived from Granite, while Fed, Ald and Alo increased with the increase of particle size in sediments from Shale and Quaternary red clay. As a result, the large particles of sediments from Shale and Quaternary red clay were more stable than that from Granite. However, no obvious distribution regularities of Sio were found in different size particles in three sediments.The content of organic matter also increased with the increase of particles size of sediment from shale and Quaternary red clay. However, the enrichment was not obvious for sediments from Granite, the content of organic matter of which was higher in 0.25-0.05 mm particles than in other sizes particles. The ration of MWD (mean weight diameter) before dispersion and after dispersion was positively correlated with the contents of oxide except Sio, which was negatively correlated with the ration. It indicated that iron-aluminum oxides (Fed, Ald and Alo) are important stable factors of red soil aggregates.

Key words: red soil, simulated rainfall, sediment, mean weight diameter, oxide, organic matter

中图分类号: 

  • S157.1
[1] MORGAN R P C. Soil erosion and conservation[M]. Edinburgh:Addison Wesley Longman, 1995.
[2] ROTH C H, EGGERT T. Mechanisms of aggregate breakdown involved in surface sealing, runoff generation and sediment concentration on loess soil[J]. Soil and Tillage Research, 1994, 32(2/3):253-268.
[3] LE BISSONNAIS Y. Aggregate stability and assessment of soil crustability and erodibility:I. Theory and methodology[J]. European Journal of Soil Science, 1996, 47(4):425-437.
[4] LE BISSONNAIS Y, ARROUAYS D. Aggregate stability and assessment of soil crustability and erodibility:II. Application to humic loamy soils with various organic carbon contents[J]. European Journal of Soil Science, 1997, 48(1):39-48.
[5] SOPHIE LEGUÉDOIS, LE BISSONNAIS Y. Size fractions resulting from an aggregate stability test, interrill detachment and transport[J]. Earth Surface Processes and Landforms, 2004, 29(9):1117-1129.
[6] 史志华, 闫峰陵, 李朝霞, 等. 红壤表土团聚体破碎方式对坡面产流过程的影响[J]. 自然科学进展, 2007, 17(2):217-224.[SHI Z H, YAN F L, LI Z X, et al. Effect of typical red soil aggregate breakdown mechanisms on the process of overland runoff[J]. Progress in Natural Science, 2007, 17(2):217-224.]
[7] YOUNG R A. Characteristics of eroded sediment. Transactions of the ASAE, 1980, 23(5):1139-1146.
[8] LOCH R J, FOLEY J L. Measurement of aggregate breakdown under rain-comparison with tests of water stability and relationships with field measurements of infiltration[J]. Australian Journal of Soil Research, 1994, 32(4):701-720.
[9] FARRES P J. The dynamics of rainsplash erosion and the role of soil aggregate stability[J]. CATENA, 1987, 14(1/3):119-130.
[10] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海:上海科学技术出版社, 1978.[Institute of Soil Science Chinese Academy of Science. Soil physical and chemical analysis[M]. Shanghai:Shanghai Science and Technology Press, 1978.]
[11] 熊毅. 土壤胶体(第二册):土壤胶体研究法[M]. 北京:科学出版社, 1985.[XIONG Y. Soil colloids (volume II):the rresearch method of soil colloids[M]. Beijing:Science Press, 1985.]
[12] LUK S H, ABRAHAMS A D, PARSONS A J. A simple rainfall simulator and trickle system for hydro-geomorphological experiments[J]. Physical Geography, 1986, 7(4):344-356.
[13] FULLEN M A, ZHENG Y, BRANDSMA R T. Comparison of soil and sediment properties of a loamy sand soil[J]. Soil Technology, 1997, 10(1):35-45.
[14] MEYER L D, LINE D E, HARMON W C. Size characteristics of sediment from agricultural soils[J]. Journal of Soil and Water Conservation, 1992, 47(1):107-111.
[15] ZHANG B, HORN R. Mechanisms of aggregate stabilization in Ultisols from subtropical China[J]. Geoderma, 2001, 99(1/2):123-145.
[16] LI Z X, CAI C F, SHI Z H, et al. Aggregate stability and its relationship with some chemical properties of red soils in Subtropical China[J]. Pedosphere, 2005, 15(1):129-136.
[17] KAPLAN D I, BERTSCH P M, ADRIANO D C. Mineralogical and physicochemical differences between mobile and nonmobile colloidal phases in reconstructed pedons[J]. Soil Science Society of America Journal, 1997, 61(2):641-649.
[1] 郭忠录, 马美景, 蔡崇法, 闫峰陵. 模拟降雨径流作用下红壤坡面侵蚀水动力学机制[J]. 长江流域资源与环境, 2017, 26(01): 150-157.
[2] 陈长青, 何园球| 卞新民. 红壤丘陵区县域农林复合生态经济系统健康评价[J]. 长江流域资源与环境, 2009, 18(1): 79-.
[3] 叶文培,王开峰,王凯荣,谢小立,李志国. 长期有机物循环对红壤稻田养分及水稻生长的影响[J]. 长江流域资源与环境, 2008, 17(5): 746-746.
[4] 涂 洁,刘琪璟,. 亚热带红壤丘陵区湿地松人工林固碳释氧效益研究[J]. 长江流域资源与环境, 2008, 17(1): 30-30.
[5] 曹 云,黄志刚,欧阳志云, 郑 华. 长江防护林——樟树林对降雨再分配的影响[J]. 长江流域资源与环境, 2007, 16(5): 603-603.
[6] 张镀光,王克林,陈洪松,李 新,王书功. 基于DEM的地形指数提取方法及应用[J]. 长江流域资源与环境, 2005, 14(6): 715-719.
[7] 陈长青,卞新民,何园球,吴大付. 东南部红壤区生态农业模式主成分分析研究[J]. 长江流域资源与环境, 2005, 14(2): 193-197.
[8] 濮励杰,赵姚阳, 金平华, 王金磊, 黄贤金,. 137Cs示踪红壤丘陵区坡地土壤侵蚀的研究——以江西丰城市为例[J]. 长江流域资源与环境, 2004, 13(6): 562-567.
[9] 周卫军, 王凯荣, 谢小立, 刘 鑫. 红壤稻田系统水分和养分转换效益研究[J]. 长江流域资源与环境, 2004, 13(5): 471-476.
[10] 黄道友,王克林,陈桂秋,黄 敏,张广平. 中亚热带红壤丘陵集水区不同开发利用模式[J]. 长江流域资源与环境, 2004, 13(3): 246-251.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李崇明,黄真理. 三峡水库入库污染负荷研究(Ⅱ)——蓄水后污染负荷预测[J]. 长江流域资源与环境, 2006, 15(1): 97 -106 .
[2] 向 波,纪昌明,蓝霄峰,罗庆松. 地下水非稳定流问题的有限分析五点格式[J]. 长江流域资源与环境, 2007, 16(6): 721 .
[3] 刘传江,朱劲松. 三峡库区土地资源承载力现状与可持续发展对策[J]. 长江流域资源与环境, 2008, 17(4): 522 .
[4] 李 佳,李思悦,谭 香,张全发. 南水北调中线工程总干渠沿线经过河流水质评价[J]. 长江流域资源与环境, 2008, 17(5): 693 .
[5] 邹丽敏, 王 超, 冯士龙. 玄武湖沉积物中重金属污染的潜在生物毒性风险评价[J]. 长江流域资源与环境, 2008, 17(2): 280 .
[6] 肖思思, 黄贤金, 彭补拙, 濮励杰, 陈 逸. 经济发达县域耕地土壤重金属污染评价及其影响因素分析[J]. 长江流域资源与环境, 2007, 16(5): 674 .
[7] 陈 爽,王 进,. 太湖流域城市化水平及外来人口影响测评[J]. 长江流域资源与环境, 2004, 13(6): 524 -529 .
[8] 张文广,胡远满, 刘 淼,杨兆平,常 禹,李秀珍,杨 孟,问青春, . 基于土地利用变化的生态服务价值损益估算——以岷江上游地区为例[J]. 长江流域资源与环境, 2007, 16(6): 821 .
[9] 李贵祥,孟广涛,方向京,郭立群,柴 勇,和丽萍,张正海. 云南金沙江流域主要森林植被类型分布格局[J]. 长江流域资源与环境, 2008, 17(1): 51 .
[10] 冯新灵,罗隆诚,邱丽丽,. 成都未来气候变化趋势的R/S分析[J]. 长江流域资源与环境, 2008, 17(1): 83 .