长江流域资源与环境 >> 2017, Vol. 26 >> Issue (01): 150-157.doi: 10.11870/cjlyzyyhj201701018

• 生态环境 • 上一篇    下一篇

模拟降雨径流作用下红壤坡面侵蚀水动力学机制

郭忠录1, 马美景1, 蔡崇法1, 闫峰陵2   

  1. 1. 华中农业大学水土保持研究中心, 湖北 武汉 430070;
    2. 长江水资源保护科学研究所, 湖北 武汉 430051
  • 收稿日期:2016-05-04 修回日期:2016-06-24 出版日期:2017-01-20
  • 作者简介:郭忠录(1980~),男,副教授,博士,主要研究方向为土壤侵蚀与水土保持.E-mail:zlguo@mail.hzau.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(41301285和40901132);中央高校基本科研业务费专项资金共同资助(2013JC013)

SOIL EROSION AND FLOW HYDRAULICS ON RED SOIL SLOPE UNDER SIMULATED RAINFALL/RUNOFF

GUO Zhong-lu1, MA Mei-jing1, CAI Chong-fa1, YAN Feng-ling2   

  1. 1. Research Center of Soil and Water Conservation, Huazhong Agricultural University, Wuhan 430070, China;
    2. Changjiang Water Resources Protection Institute, Wuhan 430051, China
  • Received:2016-05-04 Revised:2016-06-24 Online:2017-01-20
  • Supported by:
    National Natural Science Foundation of China (41301285 and 40901132);The Fundamental Research for the Central Universities (2013JC013)

摘要: 土壤侵蚀过程受控于侵蚀外营力和土壤抗侵蚀性能,深入理解坡面流水动力学特性及其侵蚀动力是研究土壤侵蚀动力学机制的基础。利用可变坡土槽,通过不同雨强(60、90和120 mm/h)和径流冲刷(10、15和20 L/min)组合模拟试验,研究了第四纪黏土红壤坡面水流的水动力学特征参数及其与土壤侵蚀量间的关系。结果显示:降雨和径流冲刷影响了坡面产流产沙过程和坡面流水力学特性,其中平均流速v、平均水深h、雷诺数Re和水流功率ω均随降雨强度和上方来水流量的增加而增大,相对水深曼宁糙率n/h则减小,其水力学他参数(弗如德数Fr、阻力系数f和水流剪切力τ)变化规律不明显。坡面水流平均速度取值范围为0.21~0.45 m/s,平均水深取值范围为5.6~9.4 mm,在试验条件下红壤坡面侵蚀水流流态大部分均处于“紊流-急流区”。不论从径流角度看或是从泥沙角度分析,由相对水深和曼宁糙率系数两种水动力因子共同组成的复合 水动力特征参数-相对水深曼宁糙率,是表征不同上方来水流量和降雨强度条件下第四纪粘土红壤坡面侵蚀特征的水动力参数。

关键词: 红壤, 坡面侵蚀, 放水冲刷, 模拟降雨, 水力学参数

Abstract: The processes of soil erosion may be determined by two aspects:the erosive agents and resistance to erosion, and it is necessary to study flow hydraulics to understand mechanisms of water erosion and to predict soil loss. A series of experiments were conducted to assess the difference of flow hydraulics under the coexisting conditions of rainfall and inflow and to understand the relationship between flow hydraulics and soil erosion amount. A soil pan (3.0 m long, 0.5 m wide and 0.35 m depth and with an adjustable slope gradient of 0°-30°) was subjected to designed rainfall intensity (60 mm·h-1, 90 mm·h-1 and 120 mm·h-1) and inflow rates (10 L·min-1, 15 L·min-1 and 20 L·min-1). Our results suggested that both rainfall intensity and inflow rate played important roles in runoff formation, soil erosion and hydraulic characteristics. The average flow velocity (V), the mean flow depth (h) and Reynolds number (Re) and the stream power (w) increased with rainfall intensity and inflow rate, and the rate of Manning roughness coefficient to mean flow depth (n/h) showed opposite trends. There were no obvious trend for the other flow hydraulics. The average flow velocity ranged from 0.21 m·s-1 to 0.45 m·s-1 and the mean flow depth from 5.6 mm to 9.4 mm. Overland flow regimes existing in the slope were almost considered as turbulent and supercritical. The results indicated that the parameter of Manning roughness coefficient to mean flow depth was probably a better hydraulic parameter to predict sediment load and runoff rate in hillslope erosion processes of red soil under the coexisting conditions of rainfall and runoff.

Key words: red soil, hillslope erosion, runoff scouring, simulated rainfall, flow hydraulics

中图分类号: 

  • S157
[1] MORGAN R P C. Soil erosion and conservation[M]. Edinburgh:Addison-Wesley Longman, 1995.
[2] 张光辉. 坡面薄层流水动力学特性的实验研究[J]. 水科学进展, 2002, 13(2):159-165. [ZHANG G H. Study on hydraulic properties of shallow flow[J]. Advances in Water Science, 2002, 13(2):159-165.
[3] GILLEY J E, WELTZ M A. Hydraulics of overland flow[R]//NEARING M A. USDA-Water Erosion Prediction Project:Hillslope Profile and Watershed Model Documentation. NSERL Report #10. Flanagan, DC:USDA, 1995.
[4] 王龙生, 蔡强国, 蔡崇法, 等. 黄土坡面发育平稳的细沟流水动力学特性[J]. 地理科学进展, 2014, 33(8):1117-1124. [WANG L S, CAI Q G, CAI C F, et al. Hydrodynamic characteristics of stable growth-rill flow on loess slopes[J]. Progress in Geography, 2014, 33(8):1117-1124.]
[5] 雷廷武, NEARING M A. 侵蚀细沟水力学特性及细沟侵蚀与形态特征的试验研究[J]. 水利学报, 2000, 41(11):49-54. [LEI T W, NEARING M A. Flume experiments for determining rill hydraulic characteristic erosion and rill patterns[J]. Journal of Hydraulic Engineering, 2000, 41(11):49-54.]
[6] 肖培青, 姚文艺, 申震洲, 等. 苜蓿草地侵蚀产沙过程及其水动力学机理试验研究[J]. 水利学报, 2011, 42(2):232-237. [XIAO P Q, YAO W Y, SHEN Z Z, et al. Experimental study on erosion process and hydrodynamics mechanism of alfalfa grassland[J]. Journal of Hydraulic Engineering, 2011, 42(2):232-237.]
[7] 李朝霞, 王天巍, 史志华, 等. 降雨过程中红壤表土结构变化与侵蚀产沙关系[J]. 水土保持学报, 2005, 19(1):1-4, 9. [LI Z X, WANG T W, SHI Z H, et al. Relationship between top soil structure changes and erosion process of red soil under simulated rainfall[J]. Journal of Soil and Water Conservation, 2005, 19(1):1-4, 9.]
[8] 邓羽松, 李双喜, 丁树文, 等. 鄂东南崩岗不同层次土壤分形特征及抗蚀性研究[J]. 长江流域资源与环境, 2016, 25(1):63-70. [DENG Y S, LI S X, DING S W, et al. Research on different soil layers of collapsing gully fractal characteristics and erosion characteristics in Tongcheng[J]. Resources and Environment in the Yangtze Basin, 2016, 25(1):63-70.]
[9] 郭太龙, 卓慕宁, 李定强, 等. 华南红壤坡面侵蚀水动力学机制试验研究[J]. 生态环境学报, 2013, 22(9):1556-1563. [GUO T L, ZHUO M N, LI D Q, et al. Experimental study on soil erosion and flow hydraulics on red soil slope[J]. Ecology and Environmental Sciences, 2013, 22(9):1556-1563.]
[10] 马仁明, 王军光, 李朝霞, 等. 降雨过程中红壤团聚体粒径变化对溅蚀的影响[J]. 长江流域资源与环境, 2013, 22(6):779-785. [MA R M, WANG J G, LI Z X, et al. Effects of dynamic distribution of aggregate size on splash erosion under rainfall in red soils[J]. Resources and Environment in the Yangtze Basin, 2013, 22(6):779-785.]
[11] ZHAO Q H, LI D Q, ZHUO M N, et al. Effects of rainfall intensity and slope gradient on erosion characteristics of the red soil slope[J]. Stochastic Environmental Research and Risk Assessment, 2015, 29(2):609-621.
[12] WEN L L, ZHENG F L, SHEN H O, et al. Rainfall intensity and inflow rate effects on hillslope soil erosion in the Mollisol region of Northeast China[J]. Natural Hazards, 2015, 79(1):381-395.
[13] 肖培青, 郑粉莉. 上方来水来沙对细沟水流水力学参数的影响[J]. 泥沙研究, 2002(4):69-74. [XIAO P Q, ZHENG F L. Effects of up-slope runoff and sediment on rill hydraulic parameters[J]. Journal of Sediment Research, 2002(4):69-74.]
[14] 张科利, 唐克丽. 黄土坡面细沟侵蚀能力的水动力学试验研究[J]. 土壤学报, 2000, 37(1):9-15. [ZHANG K L, TANG K L. A study on hydraulic characteristics of flow for prediction of rill detachment capacity on loess slope[J]. Acta Pedologica Sinica, 2000, 37(1):9-15.]
[15] GUO T L, WANG Q J, LI D Q, et al. Flow hydraulic characteristic effect on sediment and solute transport on slope erosion[J]. Catena, 2013, 107:145-153.
[1] 杨伟, 张琪, 李朝霞, 张利超, 蔡崇法. 几种典型红壤模拟降雨条件下的泥沙特征研究[J]. 长江流域资源与环境, 2016, 25(03): 439-444.
[2] 陈长青, 何园球| 卞新民. 红壤丘陵区县域农林复合生态经济系统健康评价[J]. 长江流域资源与环境, 2009, 18(1): 79-.
[3] 叶文培,王开峰,王凯荣,谢小立,李志国. 长期有机物循环对红壤稻田养分及水稻生长的影响[J]. 长江流域资源与环境, 2008, 17(5): 746-746.
[4] 涂 洁,刘琪璟,. 亚热带红壤丘陵区湿地松人工林固碳释氧效益研究[J]. 长江流域资源与环境, 2008, 17(1): 30-30.
[5] 曹 云,黄志刚,欧阳志云, 郑 华. 长江防护林——樟树林对降雨再分配的影响[J]. 长江流域资源与环境, 2007, 16(5): 603-603.
[6] 张镀光,王克林,陈洪松,李 新,王书功. 基于DEM的地形指数提取方法及应用[J]. 长江流域资源与环境, 2005, 14(6): 715-719.
[7] 陈长青,卞新民,何园球,吴大付. 东南部红壤区生态农业模式主成分分析研究[J]. 长江流域资源与环境, 2005, 14(2): 193-197.
[8] 濮励杰,赵姚阳, 金平华, 王金磊, 黄贤金,. 137Cs示踪红壤丘陵区坡地土壤侵蚀的研究——以江西丰城市为例[J]. 长江流域资源与环境, 2004, 13(6): 562-567.
[9] 周卫军, 王凯荣, 谢小立, 刘 鑫. 红壤稻田系统水分和养分转换效益研究[J]. 长江流域资源与环境, 2004, 13(5): 471-476.
[10] 黄道友,王克林,陈桂秋,黄 敏,张广平. 中亚热带红壤丘陵集水区不同开发利用模式[J]. 长江流域资源与环境, 2004, 13(3): 246-251.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李燕玲, 刘爱民. 长江流域冬季农业主要作物的耕地竞争机制及案例研究[J]. 长江流域资源与环境, 2009, 18(2): 146 .
[2] 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125 -131 .
[3] 简敏菲,弓晓峰,游 海,黄志中,朱 捷. 鄱阳湖水土环境及其水生维管束植物重金属污染[J]. 长江流域资源与环境, 2004, 13(6): 589 -593 .
[4] 王海英,宫渊波,陈林武. 不同植被恢复模式下土壤微生物及酶活性的比较——以嘉陵江上游地区为例[J]. 长江流域资源与环境, 2006, 15(2): 201 -206 .
[5] 向云波,徐长乐,彭秀芬. 长江三角洲城市群循环经济发展水平的空间格局分析[J]. 长江流域资源与环境, 2008, 17(5): 661 .
[6] 丰志勇,曾 刚. 上海市工业园区投资环境评价研究[J]. 长江流域资源与环境, 2006, 15(3): 274 -280 .
[7] 宋新山, 汪永辉, 秦 艳, 刘振鸿, 吴应玲. 上海新城区构建湿地处理污水的经济技术分析[J]. 长江流域资源与环境, 2006, 15(Sup1): 88 -91 .
[8] 陈曦. 宋至清荆江南岸分流四口的演变[J]. 长江流域资源与环境, 2009, 18(3): 270 -274 .
[9] 陈永柏, 邓 云| 梁瑞峰. 溪洛渡水电站叠梁门取水方式减缓下泄低温水的优化调度[J]. 长江流域资源与环境, 2010, 19(03): 340 .
[10] 田忠志, 邢友华, 姜瑞雪, 高雁. 东平湖表层沉积物中磷的形态分布特征研究[J]. 长江流域资源与环境, 2010, 19(06): 724 .