长江流域资源与环境 >> 2016, Vol. 25 >> Issue (10): 1603-1610.doi: 10.11870/cjlyzyyhj201610015

• 生态环境 • 上一篇    下一篇

升温对铜锈环棱螺形态及春季个体增补影响的模拟实验研究

苏溪阳1, 张敏1, 于晨1, 李超1, 徐军2   

  1. 1. 华中农业大学水产学院, 湖北省淡水水产健康养殖协同创新中心, 湖北省池塘健康养殖工程实验室, 湖北 武汉 430070;
    2. 中国科学院水生生物研究所, 湖北 武汉 430072
  • 收稿日期:2016-01-20 修回日期:2016-03-31 出版日期:2016-10-20
  • 通讯作者: 张敏,E-mail:zhm7875@mail.hzau.edu.cn E-mail:zhm7875@mail.hzau.edu.cn
  • 作者简介:苏溪阳(1991~),男,硕士研究生,主要从事水生态系统螺类种群动态的研究.E-mail:suxiyang1991@163.com
  • 基金资助:
    国家自然科学基金资助项目(31200359和31370473)

EFFECTS OF TEMPERATURE ELEVATING ON MORPHOLOGY AND SPRING RECRUITMENT OF BELLAMYA AERUGINOSA IN AN OUTDOOR MESOCOSM EXPERIMENT

SU Xi-yang1, ZHANG Min1, YU Chen1, LI Chao1, XU Jun2   

  1. 1. Collage of Fisheries, Huazhang Agriculture University Collabovative Innovation Center of Hubei Province, Hubei Provincia Engineery Laboratory for Pond Acquaculture, Wuhan 430070, China;
    2. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
  • Received:2016-01-20 Revised:2016-03-31 Online:2016-10-20
  • Supported by:
    National Science Foundation of China (31200359, 31370473)

摘要: 气候变暖已成为近几十年研究的热点,但是有关温度升高对螺类形态变化的研究还为数不多。利用中型室外模拟控制系统(Mesocosm)模拟百年之后长江中下游地区浅水湖泊水生态系统,实验设置对照组与升温组两个处理,以此探求水体温度升高对铜锈环棱螺(Bellamya aeruginosa)形态的影响。应用几何形态测量学得到铜锈环棱螺壳高、壳宽、轮廓面积与周长4个形态参数,并分别与质量进行回归分析。通过协方差分析比较两种处理回归方程的差异,发现螺类周长随温度升高发生显著变化,同时升温增加了螺类春季个体增补数量。升温对于螺类形态变化影响体现在以下3方面:升温显著增加了铜锈环棱螺的密度,加剧了种群个体间竞争,促使性成熟个体趋于小型化;升温改变铜锈环棱螺食物质量,通过影响螺类生长过程对螺类形态变化产生作用;升温改变了水体pH值,进而影响螺类外壳的钙化率和水体中钙可利用程度,对螺类外壳形成产生直接的影响,最终导致螺类形态变化。

关键词: 模拟实验, 铜锈环棱螺, 形态变化, 升温, 几何形态测量学

Abstract: In recent decades temperature elevation has been the focus of many studies on climate change, but few studies have examined the effects on gastropod communities. We performed a mesocosm experiment to simulate temperature elevation in shallow lakes of the middle and lower reaches of the Yangtze River in 2100 with two treatments, i.e., control and heating, to explore the effects of temperature elevation on morphology of Bellamya aeruginosa. Snail shell dimensions (area, perimeter, height and width) were easily quantifiable morphological traits by geometric morphometric methods, and were correlated with weight. Then analysis of covariance was applied to contrast the difference of regression equations between the two treatments and we recognized that the perimeter was statistically significant different when the temperature elevated. Meanwhile, higher temperature increased the individuals of recruitment in spring. The effects of temperature elevation on morphology of Bellamya aeruginosa were reflected in the following three aspects. The density of Bellamya aeruginosa was significantly increased in heating tanks, and induced small juvenile shell size after maturation as a result of more intense intraspecific competition. Elevated temperature led to different food quality in the diet of Bellamya aeruginosa, morphological variation was indirectly affected in the process of growth due to different qualities of food. When the water temperature got warm, the change of pH value generated limited calcium availability and constrained calcification within the shell simultaneously which influenced the shell formation and induced shell plasticity consequently.

Key words: Mesocosm, Bellamya aeruginosa, morphological variation, warming, geometric morphometric

中图分类号: 

  • Q142
[1] EDENHOFER O, SEYBOTH K. Intergovernmental panel on climate change (IPCC)[M]//SCHOGERN J F. Encyclopedia of Energy, Natural Resource, and Environmental Economics. Amsterdam:Elsevier, 2013:48-56.
[2] 徐影, 丁一汇, 赵宗慈.长江中下游地区21世纪气候变化情景预测[J].自然灾害学报, 2004, 13(1):25-31.[XU Y, DING Y H, ZHAO Z C. Prediction of climate change in middle and lower reaches of the Yangtze River in the 21st century[J]. Journal of Natural Disasters, 2004, 13(1):25-31.]
[3] BOURDEAU P E, BUTLIN R K, BRÖNMARK C, et al. What can aquatic gastropods tell us about phenotypic plasticity? A review and meta-analysis[J]. Heredity, 2015, 115(4):312-321.
[4] BRÖNMARK C, LAKOWITZ T, HOLLANDER J. Predator-induced morphological plasticity across local populations of a freshwater snail[J]. PLoS One, 2011, 6(7):e21773.
[5] DILLON JR R T. Robust shell phenotype is a local response to stream size in the genus Pleurocera (Rafinesque, 1818)[J]. Malacologia, 2011, 53(2):265-277.
[6] IRIE T. Geographical variation of shell morphology in Cypraea annulus (gastropoda:cypraeidae)[J]. Journal of Molluscan Studies, 2006, 72(1):31-38.
[7] MELATUNAN S, CALOSI P, RUNDLE S D, et al. Effects of ocean acidification and elevated temperature on shell plasticity and its energetic basis in an intertidal gastropod[J]. Marine Ecology Progress Series, 2013, 472:155-168.
[8] 杜秀英, 竺乃恺, 夏希娟, 等.微宇宙理论及其在生态毒理学研究中的应用[J].生态学报, 2001, 21(10):1726-1733.[DU X Y, ZHU N K, XIA X J, et al. The theory of microcosm and its application in ecotoxicology[J]. Acta Ecologica Sinica, 2001, 21(10):1726-1733.]
[9] MCKEE D, ATKINSON D, COLLINGS S E, et al. Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer[J]. Limnology and Oceanography, 2003, 48(2):707-722.
[10] FEUCHTMAYR H, MCKEE D, HARVEY I F, et al. Response of macroinvertebrates to warming, nutrient addition and predation in large-scale mesocosm tanks[J]. Hydrobiologia, 2007, 584(1):425-432.
[11] 闫云君, 梁彦龄.大型底栖动物体长体重关系和生化组成的研究[J].华中科技大学学报(自然科学版), 2002, 30(11):114-116.[YAN Y J, LIANG Y L. On the relationships between body-length and body-weight and the biochemical composition of macrozoobenthos[J]. Journal of Huazhong University of Science And Technology (Nature Science Edition), 2002, 30(11):114-116.]
[12] ROHLF F J. tpsDig, version 2.16:a program for digitizing landmarks and outlines for geometric morphometrics[R]. Stony Brook:Department of Ecology and Evolution, State University of New York, 2010.
[13] 陈新军, 方舟, 苏杭, 等.几何形态测量学在水生动物中的应用及其进展[J].水产学报, 2013, 37(12):1873-1885.[CHEN X J, FANG Z, SU H, et al. Review and application of geometric morphometrics in aquatic animals[J]. Journal of Fisheries of China, 2013, 37(12):1873-1885.]
[14] 赵伟华, 王海军, 王洪铸, 等.淡水螺类去壳干重和无灰干重的换算方法[J].应用生态学报, 2009, 20(6):1452-1458.[ZHAO W H, WANG H J, WANG H Z, et al. Conversion methods of freshwater snail tissue dry mass and ash free dry mass[J]. Chinese Journal of Applied Ecology, 2009, 20(6):1452-1458.]
[15] LANGERHANS R B, DEWITT T J. Plasticity constrained:over-generalized induction cues cause maladaptive phenotypes[J]. Evolutionary Ecology Research, 2002, 4(6):857-870.
[16] 陈其羽.武汉东湖铜锈环棱螺种群变动和生产量的初步观察[J].水生生物学报, 1987, 11(2):117-130.[CHEN Q Y. A preliminary study on the population dynamics and annual production of Bellamya aeruginosa (Reeve) in Lake Dong Hu, Wuhan[J]. Acta Hydrobiologica Sinica, 1987, 11(2):117-130.]
[17] 陈其羽, 宋贵保.铜锈环稜螺繁殖和生长的初步研究[J].水生生物学集刊, 1975, 5(4):519-534.[CHEN Q Y, SONG G B. A preliminary study on reproduction and growth of the snail, Bellamya aeruginosa (Veeve)[J]. Acta Hydrobiologica Sinica, 1975, 5(4):519-534.]
[18] RENGEFORS K, GUSTAFSSON S, STÅHL-DELBANCO A. Factors regulating the recruitment of cyanobacterial and eukaryotic phytoplankton from littoral and profundal sediments[J]. Aquatic Microbial Ecology, 2004, 36(3):213-226.
[19] 陈其羽.湖北省花马湖软体动物的调查报告[J].海洋与湖沼, 1979, 10(1):46-62.[CHEN Q Y. A report on mollusca in Lake Hwama, Hubei province[J]. Oceanologia et Limnologia Sinica, 1979, 10(1):46-62.]
[20] 龚志军, 李艳玲, 谢平.武汉东湖铜锈环棱螺的种群动态及次级生产力[J].湖泊科学, 2009, 21(3):401-407.[GONG Z J, LI Y L, XIE P. Population dynamics and production of Bellamya aeruginosa (Reeve) (Mollusca:Viviparidae) in Lake Donghu, Wuhan[J]. Journal of Lake Sciences, 2009, 21(3):401-407.]
[21] ATKINSON D. Temperature and Organism size-A biological law for ectotherms?[J]. Advances in Ecological Research, 1994, 25:1-58.
[22] IRIE T, FISCHER K. Ectotherms with a calcareous exoskeleton follow the temperature-size rule-evidence from field survey[J]. Marine Ecology Progress Series, 2009, 385:33-37.
[23] DUPONT S, HAVENHAND J, THORNDYKE W, et al. Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis[J]. Marine Ecology Progress Series, 2008, 373:285-294.
[24] MELATUNAN S, CALOSI P, RUNDLE S D, et al. Effects of ocean acidification and elevated temperature on shell plasticity and its energetic basis in an intertidal gastropod[J]. Marine Ecology Progress Series, 2013, 472:155-168.
[25] SOMMER U, LENGFELLNER K. Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom[J]. Global Change Biology, 2008, 14(6):1199-1208.
[26] 李宽意, 文明章, 杨宏伟, 等."螺-草"的互利关系[J].生态学报, 2007, 27(12):5427-5432.[LI K Y, WEN M Z, YANG H W, et al. Mutualistic relationship between freshwater snails and aquatic macrophytes[J]. Acta Ecologica Sinica, 2007, 27(12):5427-5432.]
[27] KORNIJÓW R, GULATI R D, OZIMEK T. Food preference of freshwater invertebrates:comparing fresh and decomposed angiosperm and a filamentous alga[J]. Freshwater Biology, 1995, 33(2):205-212.
[28] DICKINSON G H, IVANINA A V, MATOO O B, et al. Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica[J]. Journal of Experimental Biology, 2012, 215(1):29-43.
[29] FINDLAY H S, WOOD H L, KENDALL M A, et al. Comparing the impact of high CO2 on calcium carbonate structures in different marine organisms[J]. Marine Biology Research, 2011, 7(6):565-575.
[30] 王有基, 李丽莎, 李琼珍, 等.海洋酸化和全球变暖对贝类生理生态的影响研究进展[J].生态学报, 2014, 34(13):3499-3508.[WANG Y J, LI L S, LI Q Z, et al. Research progress on eco-physiological responses of shellfish under ocean acidification and global warming[J]. Acta Ecologica Sinica, 2014, 34(13):3499-3508.]
[31] NIENHUIS S, PALMER A R, HARLEY C D G. Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail[J]. Proceedings of the Royal Society B:Biological Sciences, 2010, 277(1693):2553-2558.
[1] 刘俸霞, 王艳君, 赵晶, 陈雪, 姜彤. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J]. 长江流域资源与环境, 2017, 26(05): 778-788.
[2] 胡鸿兴, 张岩岩, 何伟, 田蓉, 钟鑫, 韩世松, 李思思, 王俊杰陈文方, 杨阳, 陈侈, 邓晗, 文英, 崔雅婷, 李茜,  王璇, 彭菁菁, 高鑫, 唐义. 神农架大九湖泥炭藓沼泽湿地对镉(Ⅱ)、铜(Ⅱ)、铅(Ⅱ)、锌(Ⅱ)的净化模拟[J]. 长江流域资源与环境, 2009, 18(11): 1050-.
[3] 王红娟,姜加虎,李新国. 岱海湖泊岸线形态变化研究[J]. 长江流域资源与环境, 2006, 15(5): 674-677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 向 波,纪昌明,蓝霄峰,罗庆松. 地下水非稳定流问题的有限分析五点格式[J]. 长江流域资源与环境, 2007, 16(6): 721 .
[2] 刘传江,朱劲松. 三峡库区土地资源承载力现状与可持续发展对策[J]. 长江流域资源与环境, 2008, 17(4): 522 .
[3] 肖思思, 黄贤金, 彭补拙, 濮励杰, 陈 逸. 经济发达县域耕地土壤重金属污染评价及其影响因素分析[J]. 长江流域资源与环境, 2007, 16(5): 674 .
[4] 陈 逸,黄贤金,彭补拙,濮励杰,张 健 . 经济发达区不同土地利用方式下土壤中镉的含量特征——以江苏省昆山市为例[J]. 长江流域资源与环境, 2007, 16(3): 391 .
[5] 魏显虎|杜耘,蔡述明,薛怀平,刘韬,. 清江流域1995~2000年土壤侵蚀时空变化[J]. 长江流域资源与环境, 2006, 15(Sup1): 120 -124 .
[6] 姚书春,薛 滨,夏威岚. 洪湖历史时期人类活动的湖泊沉积环境响应[J]. 长江流域资源与环境, 2005, 14(4): 475 -480 .
[7] 林建伟,王里奥, 赵建夫,张 军,袁 辉. 三峡库区生活垃圾的重金属污染程度评价[J]. 长江流域资源与环境, 2005, 14(1): 104 -108 .
[8] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[9] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[10] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .