长江流域资源与环境 >> 2016, Vol. 25 >> Issue (Z1): 83-94.doi: 10.11870/cjlyzyyhj2016Z1012

• 自然灾害 • 上一篇    下一篇

长江上游中小洪水天气学机理分析及致洪特征

祁海霞1, 王晓玲1, 李银娥1, 白永清2   

  1. 1. 武汉中心气象台, 湖北 武汉 430074;
    2. 中国气象局武汉暴雨研究所暴雨监测预警湖北省重点实验室, 湖北 武汉 430205
  • 收稿日期:2015-08-26 修回日期:2015-12-22 出版日期:2016-11-26
  • 作者简介:祁海霞(1984~),女,硕士研究生,主要从事天气预报及数值模拟研究.E-mail:qxynl@163.com
  • 基金资助:
    中国长江电力股份有限公司项目:“长江上游流域中小洪水天气特征分析”(2414020008)

SYNOPTIC ANALYSIS OF MEDIUM-SMALL FLOOD AND THE CHARACTERS OF FLOOD-CAUSING IN THE UPPER REACHES OF YANGTZE RIVER

QI Hai-xia1, WANG Xiao-ling1, LI Yin-e1, BAI Yong-qing2   

  1. 1. Wuhan Central Meteorological Observatory, Wuhan 430074, China;
    2. Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China
  • Received:2015-08-26 Revised:2015-12-22 Online:2016-11-26
  • Supported by:
    China Yangtze power co., LTD Foundation: "The synoptic analysis of medium-small flood and the characters of flood-causing in the upper reaches of Yangtze River" (2414020008)

摘要: 基于1981~2012年长江上游128个中小洪水历史个例及NCEP/NCAR再分析资料,采用普查及天气学分型方法,建立了纬向型、经向型、偏东气流型以及两高之间型4种致洪降水天气学概念模型,研究了各天气型致洪降水发生机理及相应中小洪水特征。得到以下结论:纬向型中高纬环流相对平直多波动,伴有明显冷平流南下,地面锋面位置略偏北。该类型强降水过程多,强度大,持续时间长,对应中小洪水多为双峰或多峰型,平均洪峰流量、过程增幅最强,洪水过程时间也最长。经向型环流中高纬贝加尔湖和东北地区为深厚低槽,中低层常伴有暖式切变线或低涡发展,中上层急流出口处的辐散以及冷平流四类型中最强。该类型雨带多呈东北-西南走向,中小洪水一般以单峰为主,其洪峰流量及过程增幅均较大,造成的洪水涨水较快,过程时间最短。纬向和经向型均为全流域降水型,但在金沙江北部、岷沱江、嘉陵江以及宜宾-宜昌常出现较高频次的60 mm以上较强面雨量。偏东气流型副高与热带气旋外围环流汇合北进,其强降水前后冷暖平流变化不明显,受地形强迫抬升影响,最易产生准静止型、团状、突发性强降水。该类型中小洪水以单峰为主,涨水快,洪峰流量及过程增幅均最小,强降水主要分布在嘉陵江和岷沱江两大流域。两高之间型多为“鞍”型场的环流配置,青藏高压与副高在流域上空形成南北向切变线,其动力和水汽条件均较弱。该类型降水强度较弱,稳定少动,累积降水量较大,洪水以单峰为主,双峰偶有发生,其洪峰流量、过程增幅均较大,洪水过程时间较长,强降水多位于岷沱江、嘉陵江和宜宾-重庆中部流域。

关键词: 长江上游, 致洪暴雨, 天气学分型, 中小洪水特征

Abstract: Based on the medium and small flood data from 1981-2012 in the upper reaches of Yangtze River and the NECP/NCAR reanalyzed data, the primary weather types of medium and small flood are summarized. They are zonal type, meridional type, easterly flow type and shear line between Tibetan high and subtropical high. The occurrence mechanism of flood-causing and the characters of medium and small flood have been researched by using the diagnostic analysis. The results show that the circulation of the zonal type is relatively flat in mid-high latitudes. Low trough in the northern XinJiang leads cold air flow to low-mid latitudes, and often accompanying with southwest jet at 850 hPa and 700 hPa, but the ground front position is slightly north. This type often has stronger precipitation processes, which are more severer and have long durations. And the medium and small flood presents double peaks or multiple peaks. The average peak discharge, the increasing discharge is the strongest. And the maintenance time of the flood process is the longest, about 14 days. The circulation of meridional type has deeper trough in Baikal lake and Northeast China, and has warm and humidity shear line or vortex development. The divergence in the exit area of the jet and cold advection is the most outstanding. The rainbelt of this type often appears from southwest to northeast. The medium and small floods present single peaks. The average peak discharge and the increasing discharge is medium. And the maintenance time of the flood process is the shortest, about 12 days and rising flow is faster. The high frequency of surface rainfall often occurs in the northern Jinshajiang River, Mingtuojiang River, Jialingjiang River and Yibin-Yichang watershed. The strong precipitation could occur in the whole watershed. Subtropical High over the Western Pacific and tropical cyclone meet toward to the upper reaches of Yangtze River with water vapor of the easterly flow type. The cold advection does not change significantly before and after the heavy rain. Influenced by topographic forcing uplift, the spatial distribution of heavy rain is frequently quasi-stationary, appeared as gobbets and sudden character. The medium and small flood of this type presents single peak. The average peak discharge and the increasing discharge is minimum and the rising flow is fastest. The strong precipitation occurs in the Mingtuojiang River and Jialingjiang River watershed. The circulation of shear line between Tibetan high and subtropical high is obvious saddle field. The power and water vapor conditions are weaker. This intensity of the precipitation is weaker, less stable, but accumulated precipitation is larger. The flood is given priority single peak, though bimodal peak occasionally occurred. The average peak discharge, the increasing discharge and the flood process is medium. The strong precipitation occurs in the Mingtuojiang River, Jialingjiang River and Yibin-Chongqing watershed.

Key words: the upper reaches of Yangtze River, flood-causing storm, synoptic type, characters of medium and small flood

中图分类号: 

  • P458.1
[1] 范可旭, 徐长江. 乌江洪水与长江三峡洪水遭遇研究[J]. 水文, 2010, 30(4):63-65.[FAN K X, XU C J. Research on meeting of floods from Wujiang river and three gorges[J]. Journal of China Hydrology, 2010, 30(4):63-65.]
[2] CHEN W, ZHI X F. Comparisons of the west Pacific subtropical high and the South Asia high between NCEP/NCAR and ECMWF reanalysis datasets[J]. Journal of Tropical Meteorology, 2008, 14(2):121-124.
[3] 张玲, 智协飞. 南亚高压和西太副高位置与中国盛夏降水异常[J]. 气象科学, 2010, 30(4):438-444.[ZHANG L, ZHI X F. South Asian high and the subtropical western Pacific high and its relation to the mid-summer precipitation anomalies over China[J]. Scientia Meteorologica Sinica, 2010, 30(4):438-444.]
[4] KUO Y H, CHENG L S, ANTHES R A. Mesoscale analyses of the Sichuan flood catastrophe, 11-15 July 1981[J]. Monthly Weather Review, 1986, 114(11):1984-2003.
[5] CHEN Y L, CHEN X A, CHEN S, et al. A numerical study of the low-level jet during TAMEX IOP 5[J]. Monthly Weather Review, 1997, 125(10):2583-2604.
[6] 慕建利, 李泽椿, 李耀辉, 等. 高原东侧特大暴雨过程中秦岭山脉的作用[J]. 高原气象, 2009, 28(6):1282-1290.[MU J L, LI Z C, LI Y H, et al. Effect of Qinling mountains of a extremely heavy rain-storm process on the east side of Qinghai-Xizang plateau[J]. Plateau Meteorology, 2009, 28(6):1282-1290.]
[7] 陈鹏, 徐海明, 林永辉. 涡度收支与潜热释放对西南低涡形成的作用[J]. 大气科学学报, 2014, 37(5):575-584.[CHEN P, XU H M, LIN Y H. The influence of low-level jet and latent heat release on the formation of a southwest vortex[J]. Transactions of Atmospheric Sciences, 2014, 37(5):575-584.]
[8] HOBBS P V, EASTER R C, FRASER A B. A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain:part Ⅱ. Microphysics[J]. Journal of the Atmospheric Sciences, 1973, 30(5):813-823.
[9] WANG W, KUO Y H, WARNER T T. A diabatically driven mesoscale vortex in the lee of the Tibetan Plateau[J]. Monthly Weather Review, 1993, 121(9):2542-2561.
[10] 廖菲, 洪延超, 郑国光. 地形对降水的影响研究概述[J]. 气象科技, 2007, 35(3):309-316.[LIAO F, HONG Y C, ZHENG G G. Review of orographic influences on surface precipitation[J]. Meteorological Science and Technology, 2007, 35(3):309-316.]
[11] 卢萍, 翟丹华, 李英, 等. 影响重庆暴雨的三类西南低涡浅析[J]. 热带气象学报, 2014, 30(4):736-746.[LU P, ZHAI D H, LI Y, et al. Analysis of three kinds of southwest vortexes influencing rainstorms in Chongqing city[J]. Journal of Tropical Meteorology, 2014, 30(4):736-746.]
[12] 张一平, 乔春贵, 梁俊平. 淮河上游短时强降水天气学分型与物理诊断量阈值初探[J]. 暴雨灾害, 2014, 33(2):129-138.[ZHANG Y P, QIAO C G, LIANG J P. Tentative discussion on synoptic type and physical diagnostic threshold of short-time strong precipitation in upper reaches of the Huaihe River[J]. Torrential Rain and Disasters, 2014, 33(2):129-138.]
[13] 周慧, 杨令, 刘志雄, 等. 湖南省大暴雨时空分布特征及其分型[J]. 高原气象, 2013, 32(5):1425-1431.[ZHOU H, YANG L, LIU Z X, et al. Characteristics of temporal-spatial distributions of heavy rainstorm in Hunan and its typing[J]. Plateau Meteorology, 2013, 32(5):1425-1431.]
[14] 丁治英, 张兴强, 何金海, 等. 非纬向高空急流与远距离台风中尺度暴雨的研究[J]. 热带气象学报, 2001, 17(2):144-152.[DING Z Y, ZHANG X Q, HE J H, et al. The study of storm rainfall caused by interaction between the non-zonal high level jet streak and the far distant typhoon[J]. Journal of Tropical Meteorology, 2001, 17(2):144-152.]
[15] 王黎娟, 高辉, 刘伟辉. 西南季风与登陆台风耦合的暴雨增幅诊断及其数值模拟[J]. 大气科学学报, 2011, 34(6):662-671.[WANG L J, GAO H, LIU W H. Diagnosis and numerical simulation of increased torrential rainfall associated with a landfalling typhoon coupled with Southwest monsoon[J]. Transactions of Atmospheric Sciences, 2011, 34(6):662-671.]
[16] 陈忠明, 黄福均, 何光碧. 热带气旋与西南低涡相互作用的个例研究I.诊断分析[J]. 大气科学, 2002, 26(3):352-360.[CHEN Z M, HUANG F J, HE G B. A case study of interactions between the tropical cyclone and the Southwest vortex. Part I:diagnostic analysis[J]. Chinese Journal of Atmospheric Sciences, 2002, 26(3):352-360.]
[17] 康岚, 郝丽萍, 罗玲, 等. 1002号台风对四川盆地大暴雨的影响分析[J]. 热带气象学报, 2013, 29(1):169-176.[KANG L, HAO L P, LUO L, et al. The analysis of the effect of typhoon 1002 on storm rainfall in Sichuan basin[J]. Journal of Tropical Meteorology, 2013, 29(1):169-176.]
[18] DUAN W L, HE B, TAKARA K, et al. Anomalous atmospheric events leading to Kyushu's flash floods, July 11-14, 2012[J]. Natural Hazards, 2014, 73(3):1255-1267.
[19] SEMENOV E K, SOKOLIKHINA N N, TATARINOVICH E V, et al. Synoptic conditions of the formation of a catastrophic flood on the Amur River in 2013[J]. Russian Meteorology and Hydrology, 2014, 39(8):521-527.
[20] KAHANA R, ZIV B, ENZEL Y, et al. Synoptic climatology of major floods in the Negev Desert, Israel[J]. International Journal of Climatology, 2002, 22(7):867-882.
[21] COLLINS M J, KIRK J P, PETTIT J, et al. Annual floods in New England (USA) and Atlantic Canada:synoptic climatology and generating mechanisms[J]. Physical Geography, 2014, 35(3):195-219.
[22] 肖中, 赵东, 曹磊. 长江上游"10.7"洪水及寸滩站水位流量关系分析[J]. 人民长江, 2010, 41(21):39-41.[XIAO Z, ZHAO D, CAO L. Analysis on "10.7" flood of upstream Yangtze River and level-discharge relation at Cuntan hydrological station[J]. Yangtze River, 2010, 41(21):39-41.]
[23] 张洪刚, 郭海晋, 欧应钧. 长江流域洪水地区组成与遭遇规律研究[J]. 人民长江, 2013, 44(10):62-65, 87.[ZHANG H G, GUO H J, OU Y J. Research on composition and encounter laws of flood in Yangtze River Basin[J]. Yangtze River, 2013, 44(10):62-65, 87.]
[24] 熊莹. 长江上游干支流洪水组成与遭遇研究[J]. 人民长江, 2012, 43(10):42-45.[XIONG Y. Research on flood composition and encounter of main streams and tributaries in upper Yangtze River[J]. Yangtze River, 2012, 43(10):42-45.]
[1] 陈璇, 张萍萍, 田刚, 董良鹏, 韦惠红, 徐卫立, 岳岩裕, 车钦. 长江上游流域大洪水天气分型特征分析[J]. 长江流域资源与环境, 2015, 24(12): 2142-2152.
[2] 黄小燕, 韦杰. 长江上游流域降雨侵蚀力变化对河流输沙量的影响[J]. 长江流域资源与环境, 2015, 24(09): 1606-1612.
[3] 段辛斌, 田辉伍, 高天珩, 刘绍平, 王珂, 陈大庆. 金沙江一期工程蓄水前长江上游产漂流性卵鱼类产卵场现状[J]. 长江流域资源与环境, 2015, 24(08): 1358-1365.
[4] 雷娟, 梁阳阳, 隋晓云, 陈毅峰. 长江上游支流老河沟鱼类群落结构的时空格局[J]. 长江流域资源与环境, 2015, 24(07): 1126-1132.
[5] 李凌琪, 熊立华, 江聪, 张洪刚. 气温对长江上游巴塘站年径流的影响分析[J]. 长江流域资源与环境, 2015, 24(07): 1142-1149.
[6] 许全喜| 张小峰| 袁, 晶. 长江上游河流输沙量时间序列跃变现象研究[J]. 长江流域资源与环境, 2009, 18(6): 555-.
[7] 段辛斌,刘绍平,熊飞,陈大庆,, 杨如恒, 池成贵5, 穆天荣6. 长江上游干流春季禁渔前后三年渔获物结构和生物多样性分析[J]. 长江流域资源与环境, 2008, 17(6): 878-878.
[8] 张晓平,樊 杰. 长江上游生态脆弱区生态屏障建设与产业发展战略研究——以昭通市为例[J]. 长江流域资源与环境, 2006, 15(3): 310-314.
[9] 何易平, 马泽忠, 谢 洪, 钟敦伦. 长江上游地区不同土地利用方式对山地灾害的敏感性分析——以金沙江一级支流小江流域为例[J]. 长江流域资源与环境, 2005, 14(4): 528-533.
[10] 周廷刚,张其良. 长江上游水土流失成因及治理模式研究——以重庆市城口县为例[J]. 长江流域资源与环境, 2004, 13(1): 89-93.
[11] 谢 洪,钟敦伦,李 泳,韦方强. 长江上游泥石流灾害的特征[J]. 长江流域资源与环境, 2004, 13(1): 94-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘 健,陈 星,彭恩志,周学东. 气候变化对江苏省城市系统用电量变化趋势的影响[J]. 长江流域资源与环境, 2005, 14(5): 546 -550 .
[2] 于国荣,夏自强,叶辉,王桂华,吴 瑶. 大坝下游河段的河流生态径流调控研究[J]. 长江流域资源与环境, 2008, 17(4): 606 .
[3] 张 静,汪诚信,白呼群,苏崇鳌,鄂启顺,武桂珍,黄玉英. 三峡库区虫媒和自然疫源性疾病分析[J]. 长江流域资源与环境, 2004, 13(2): 145 -148 .
[4] 谢 辉,张 雷,姜 巍,程晓凌. 21世纪初华中地区发展的资源环境基础[J]. 长江流域资源与环境, 2006, 15(1): 1 -5 .
[5] 吴佳鹏 陈凯麒. 基于灰色模糊理论的流域水电规划环境影响综合评价[J]. 长江流域资源与环境, 2009, 18(3): 281 -285 .
[6] 陈群元 宋玉祥 喻定权. null[J]. 长江流域资源与环境, 2009, 18(4): 301 .
[7] 张永永, 黄强, 桑华. 商洛市水资源供需分析及合理利用对策[J]. 长江流域资源与环境, 2009, 18(7): 630 .
[8] 席酉民, 刘静静, 沈力. 国外流域管理的成功经验对雅砻江流域管理的启示[J]. 长江流域资源与环境, 2009, 18(7): 635 .
[9] 但尚铭, 安海锋, 但玻, 许辉熙, 杨玲, 陈刚毅. 基于AVHRR和DEM的重庆城市热岛效应分析[J]. 长江流域资源与环境, 2009, 18(7): 680 .
[10] 方国华, 夏春凤, 于凤存. 水利枢纽施工干扰区生态系统综合评价[J]. 长江流域资源与环境, 2009, 18(12): 1193 .