长江流域资源与环境 >> 2017, Vol. 26 >> Issue (01): 91-99.doi: 10.11870/cjlyzyyhj201701011

• 生态环境 • 上一篇    下一篇

城市生态系统复合下垫面碳通量特征——以上海市奉贤大学城为例

龚元1, 赵敏1, 姚鑫2, 郭智娟2, 何毅1, 张立平1, 林文鹏1   

  1. 1. 上海师范大学城市生态与环境研究中心, 上海 200234;
    2. 上海师范大学生命与环境科学学院, 上海 200234
  • 收稿日期:2016-05-18 修回日期:2016-08-15 出版日期:2017-01-20
  • 通讯作者: 赵敏,E-mail:zhaomin@shnu.edu.cn E-mail:zhaomin@shnu.edu.cn
  • 作者简介:龚元(1992~),男,硕士研究生,主要从事城市生态和GIS应用方面的研究.E-mail:1072363740@qq.com
  • 基金资助:
    国家自然科学基金项目(31100354,41571047)

STUDY ON CARBON FLUX CHARACTERISTICS OF THE UNDERLYING SURFACE OFURBAN ECOSYSTEM-A CASE STUDY OF SHANGHAI FENGXIAN UNIVERSITY CITY

GONG Yuan1, ZHAO Min1, YAO Xin2, GUO Zhi-juan2, HE Yi1, ZHANG Li-ping1, LIN Wen-peng1   

  1. 1. Urban Research Center of Ecology and Environment, Shanghai Normal University, Shanghai 200234, China;
    2. Life and Environmental Sciences college, Shanghai Normal University Shanghai 200234, China
  • Received:2016-05-18 Revised:2016-08-15 Online:2017-01-20
  • Supported by:
    National Natural Science Foundation of China (31100354, 41571047)

摘要: 随着城市化进程的加速和城市人口规模的增加,城市已成为最大的碳源,研究城市生态系统对大气二氧化碳的贡献成为碳循环研究的焦点问题之一。基于研究区域内土地利用现状和一年的涡动观测系统观测数据,结合地理信息技术(ArcGIS)和通量计算工具(Eddypro 及ART Footprint Tool)以及碳通量足迹模型分析了上海奉贤大学城碳通量足迹特征,基于此探讨不同下垫面类型,包括以草本和木本等透水层为主的下垫面(称为自然系统),以建筑物、道路等不透水层为主的下垫面(称为社会系统)碳通量的变化特征。研究结果表明:1)在不同风向上,碳通量贡献区范围随着大气稳定度的增加而扩大。大气处于稳定条件下,非主风向上的碳通量贡献区范围(最大范围1 100 m)比主风向上的碳通量贡献区范围(最大范围780m)要大;当大气处于不稳定条件下时主风向和非主风向下的碳通量贡献区范围相差不大(最大范围分别为321和351m)。2)不同下垫面其源汇特征不同,以绿色植物为主的自然系统年碳通量均值为-4.1μmol/m2/s,表现为碳汇;社会系统的年碳通量均值为8.6μmol/m2/s,表现为碳源。3)自然系统的碳通量日变化具有较明显的季节分异,变化特征大致呈“U”型;社会系统的碳通量日变化没有明显的季节分异,变化特征大致呈“M”型。绿色植物对城市生态系统的大气二氧化碳有降低作用,结合自然和社会系统的碳通量变化特征可以为以后合理规划城市布局,建立低碳城市提供服务。

关键词: 涡动观测技术, 下垫面, 社会系统, 自然系统, 碳通量, 足迹分析

Abstract: Cities are the largest carbon source and have the major contribution to atmospheric carbon dioxide under the rapid urbanization. Quantifying the urban carbon flux characteristics is very important. In this study, Eddy Covariance(EC) data and GIS tool were used to explore the footprint and carbon flux characteristics based on Eddypro and ART footprint tool in Fengxian University Town, Shanghai.The underlying surface of the study area is complex, which is composed of herbaceous, woody and other permeable layer(named as natural system) and buildings, roads and other impervious layer(named as social system). The results showed that under different wind directions, carbon flux contribution areas were expanding with the increasing atmospheric stability. When the atmosphere was under the static condition, the range of carbon flux contribution areas under non-main wind direction(the maximum range was 1100 m)was larger than that of the carbon flux contribution area under main wind direction(the maximum range was 780 m). When the atmosphere was under the unstable condition, the carbon flux contribution area under main wind direction and non-main wind direction had little difference (maximum ranges were 321 meters and 351 meters,respectively). The source and sink characteristics of different underlying surface were different. Mean annual carbon flux of the natural system with green plants as the principal component was4.1μmol/m2/s, which was a carbon sink; mean annual carbon flux of the social system was 8.6 μmol/m2/s, which was a carbon source. Carbon flux diurnal variations of natural system in different seasons were different.The variation roughly presents a "U" shape; there was no obvious seasonal difference for carbon flux diurnal of the social system.The carbon and the variable characteristics roughly presented an "M" shape. This study may be useful for establishing low-carbon city and managing urban green spaces.

Key words: eddy observation technology, underlying surface, social system, natural system, carbon flux, footprint analysis

中图分类号: 

  • Q14
[1] 赵荣钦, 黄贤金. 城市系统碳循环:特征、机理与理论框架[J]. 生态学报. 2013, 33(2):358-366. [ZHAO R Q, HUANG X J. Carbon cycle of urban system:characteristics, mechanism and theoretical framework[J]. Acta Ecologica Sinica, 2013, 33(2):358-366.]
[2] 袁庄鹏, 赵敏. 基于FSAM模型的城市碳通量观测贡献区研究[J]. 上海师范大学学报(自然科学版), 2012, 41(5):533-539. [YUAN Z P, ZHAO M. Research of flux footprint of city based on the FSAM model[J]. Journal of Shanghai Normal University (Natural Sciences), 2012, 41(5):533-539.]
[3] GAHAGAN A, GIARDINA C P, KING J S, et al. Carbon fluxes, storage and harvest removals through 60 years of stand development in red pine plantations and mixed hardwood stands in Northern Michigan, USA[J]. Forest Ecology and Management, 2015, 337:88-97.
[4] SHAH M V, BADLE S S, RAMACHANDRAN K B. Hyaluronic acid production and molecular weight improvement by redirection of carbon flux towards its biosynthesis pathway[J]. Biochemical Engineering Journal, 2013, 80:53-60.
[5] O'HAGAN A. Probabilistic uncertainty specification:overview, elaboration techniques and their application to a mechanistic model of carbon flux[J]. Environmental Modelling & Software, 2012, 36:35-48.
[6] GREGG W W, CASEY N W, ROUSSEAUX C S. Sensitivity of simulated global ocean carbon flux estimates to forcing by reanalysis products[J]. Ocean Modelling, 2014, 80:24-35.
[7] BORCHARD N, SCHIRRMANN M, VON HEBEL C, et al. Spatio-temporal drivers of soil and ecosystem carbon fluxes at field scale in an upland grassland in Germany[J]. Agriculture, Ecosystems & Environment, 2015, 211:84-93.
[8] HARRIS A, DASH J. The potential of the MERIS Terrestrial Chlorophyll Index for carbon flux estimation[J]. Remote Sensing of Environment, 2010, 114(8):1856-1862.
[9] MILANOLO S, GABROVŠEK F. Estimation of carbon dioxide flux degassing from percolating waters in a karst cave:case study from Bijambare cave, Bosnia and Herzegovina[J]. Chemie der Erde-Geochemistry, 2015, 75(4):465-474.
[10] STROHBACH M W, ARNOLD E, HAASE D. The carbon footprint of urban green space-a life cycle approach[J]. Landscape and Urban Planning, 2012, 104(2):220-229.
[11] 刘郁珏, 胡非, 程雪玲, 等. 北京城市通量足迹及源区分布特征分析[J]. 大气科学, 2014, 38(6):1044-1054. [LIU Y J, HU F, CHENG X L, et al. Distribution of the source area and footprint of Beijing[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(6):1044-1054.]
[12] 袁庄鹏. 碳通量变化特征及影响因子研究[D]. 上海:上海师范大学硕士学位论文, 2013.
[13] 顾永剑, 高宇, 郭海强, 等. 崇明东滩湿地生态系统碳通量贡献区分析[J]. 复旦学报(自然科学版), 2008, 47(3):374-379, 386. [GU Y J, GAO Y, GUO H Q, et al. Footprint analysis for carbon flux in the wetland ecosystem of Chongming Dongtan[J]. Journal of Fudan University (Natural Science), 2008, 47(3):374-379, 386.]
[14] 张慧. 中亚热带人工林碳水通量贡献区的评价研究[D]. 南京:南京信息工程大学硕士学位论文, 2012. [ZHANG H. The study of flux footprint intypical subtropical monsoon man-planted forest[D]. Nanjing:Master Dissertation of Nanjing University of Information Science & Technology, 2012.]
[15] 王江涛. 崇明东滩滨海围垦区芦苇湿地CO2通量特征[D]. 上海:华东师范大学硕士学位论文, 2015. [WANG J T. Characteristics of carbon dioxide flux in the coastal reclaimed reed wetland of Chongming Dongtan[D]. Shanghai:Master Dissertation of East China Normal University, 2015.]
[16] VELASCO E, PERRUSQUIA R, JIMÉNEZ E, et al. Sources and sinks of carbon dioxide in a neighborhood of Mexico City[J]. Atmospheric Environment, 2014, 97:226-238.
[17] KORDOWSKI K, KUTTLER W. Carbon dioxide fluxes over an urban park area[J]. Atmospheric Environment, 2010, 44(23):2722-2730.
[18] KUMAR K M, NAGENDRA S M S. Characteristics of ground level CO2concentrations over contrasting land uses in a tropical urban environment[J]. Atmospheric Environment, 2015, 115:286-294.
[19] KURPPA M, NORDBO A, HAAPANALA S, et al. Effect of seasonal variability and land use on particle number and CO2 exchange in Helsinki, Finland[J]. Urban Climate, 2015, 13:94-109.
[20] NEFTEL A, SPIRIG C, AMMANN C. Application and test of a simple tool for operational footprint evaluations[J]. Environmental Pollution, 2008, 152(3):644-652.
[21] 龚笑飞, 陈丽萍, 莫路锋. 基于FSAM模型的毛竹林碳通量贡献区研究[J]. 西南林业大学学报, 2015, 35(6):37-44. [GONG X F, CHEN L P, MO L F. Research of flux footprint of Anji bamboo forest ecosystems based on the FSAM model[J]. Journal of Southwest Forestry University, 2015, 35(6):37-44.]
[22] 周琪, 李平衡, 王权, 等. 西北干旱区荒漠生态系统通量贡献区模型研究[J]. 中国沙漠, 2014, 34(1):98-107. [ZHOU Q, LI P H, WANG Q, et al. A footprint analysis on a desert ecosystem in West China[J]. Journal of Desert Research, 2014, 34(1):98-107.]
[23] 汤洁, 韩源, 刘森, 等. 吉林西部不同土地利用方式下的生长季土壤CO2排放通量日变化及影响因素[J]. 生态环境学报, 2012, 21(1):33-37. [TANG J, HAN Y, LIU S, et al. Diurnal variation of soil CO2 fluxes and factors in different land use types during growing season in western Jilin province[J]. Ecology and Environment Sciences, 2012, 21(1):33-37.]
[24] 王宇, 周广胜, 贾丙瑞, 等. 中国东北地区阔叶红松林与兴安落叶松林的碳通量特征及其影响因子比较[J]. 生态学报, 2010, 30(16):4376-4388. [WANG Y, ZHOU G S, JIA B R, et al. Comparisons of carbon flux and its controls between broad-leaved Korean pine forest and Dahurian larch forest in northeast China[J]. Acta Ecologica Sinica, 2010, 30(16):4376-4388.]
[25] NEMITZ E, HARGREAVES K J, MCDONALD A G, et al. Micrometeorological measurements of the urban heat budget and CO2 emissions on a city scale[J]. Environmental Science Technology, 2002, 36(14):3139-3146.
[26] 贾庆宇, 周广胜, 王宇, 等. 城市复杂下垫面供暖前后CO2通量特征分析[J]. 环境科学, 2010, 31(4):843-849. [JIA Q Y, ZHOU G S, WANG Y, et al. Characteristics of CO2 flux before and in the heating period at urban complex underlying surface area[J]. Environmental Science, 2010, 31(4):843-849.]
[27] SCHMIDT A, WRZESINSKY T, KLEMM O. Gap filling and quality assessment of CO2 and water vapour fluxes above an urban area with radial basis function neural networks[J]. Boundary-Layer Meteorology, 2008, 126(3):389-413.
[28] VOGT R, CHRISTEN A, ROTACH M W, et al. Temporal dynamics of CO2 fluxes and profiles over a Central European city[J]. Theoretical and Applied Climatology, 2006, 84(1/3):117-126.
[29] VELASCO E, PRESSLEY S, ALLWINE E, et al. Measurements of CO2 fluxes from the Mexico City urban landscape[J]. Atmospheric Environment, 2005, 39(38):7433-7446.
[30] GRIMMOND C S B, KING T S, CROPLEY F D, et al. Local-scale fluxes of carbon dioxide in urban environments:methodological challenges and results from Chicago[J]. Environmental Pollution, 2002, 116(1):S243-S254.
[1] 周峰, 吕慧华, 许有鹏. 城镇化平原河网区下垫面特征变化及洪涝影响研究[J]. 长江流域资源与环境, 2015, 24(12): 2094-2099.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 寇刘秀, 包存宽, 蒋大和. 生态足迹在城市规划环境评价中的应用——以苏州市域城镇体系规划为例[J]. 长江流域资源与环境, 2008, 17(1): 119 .
[2] 杨 山. 南京城镇空间形态的度量和分析[J]. 长江流域资源与环境, 2004, 13(1): 7 -11 .
[3] 张维昊,宋立荣,徐小清,刘永定,张锡辉. 天然水体中微囊藻毒素归宿的初步研究[J]. 长江流域资源与环境, 2004, 13(1): 84 -88 .
[4] 陈明曦,陈芳清,刘德富 . 应用景观生态学原理构建城市河道生态护岸[J]. 长江流域资源与环境, 2007, 16(1): 97 -101 .
[5] 李干蓉 刘丛强 陈 椽 汪福顺 王宝利 李军 灌瑾. 丰水期乌江上游干流水库—河流体系硫同位素组成[J]. 长江流域资源与环境, 2009, 18(4): 350 .
[6] 黄锡生 王 江. 中国国际河流水资源利用立法略论[J]. 长江流域资源与环境, 2009, 18(5): 416 .
[7] 覃 婕 周志翔 滕明君 王燕燕 史梅容. 武汉市九峰城市森林保护区景观敏感度评价[J]. 长江流域资源与环境, 2009, 18(5): 453 .
[8] 张笑楠, 王克林, 张明阳, 张伟, 凡非得. 人类活动影响下喀斯特区域景观格局梯度分析[J]. 长江流域资源与环境, 2009, 18(12): 1187 .
[9] 郭劲松| 贺 阳| 付 川| 方 芳| 李 哲| 杨 艳. 三峡库区腹心地带消落区土壤氮磷含量调查[J]. 长江流域资源与环境, 2010, 19(03): 311 .
[10] 张怡然, 邱道持, 李艳. 浅析三峡库区农村集体建设用地集约利用[J]. 长江流域资源与环境, 2010, 19(z1): 40 .