长江流域资源与环境 >> 2017, Vol. 26 >> Issue (05): 738-746.doi: 10.11870/cjlyzyyhj201705011

• 生态环境 • 上一篇    下一篇

向家坝水库水温时空特征及其成因分析

龙良红1, 徐慧1, 纪道斌1, 严萌3, 刘德富1,2   

  1. 1. 三峡大学水利与环境学院, 湖北 宜昌 443002;
    3. 湖北工业大学河湖生态修复与藻类利用湖北省重点实验室, 湖北 武汉 430068;
    2. 珠江水利科学研究院, 广东 广州 510611
  • 收稿日期:2016-10-12 修回日期:2017-01-13 出版日期:2017-05-20
  • 通讯作者: 纪道斌 E-mail:394816707@qq.com
  • 作者简介:龙良红(1991~),男,硕士,主要研究方向为生态水利和生态水工学.E-mail:893310859@qq.com
  • 基金资助:
    973计划前期研究专项(2014CB460601);国家科技合作与交流专项 (2014DFE70070);国家自然科学基金青年基金(51509086);国家科技重大专项(2014ZX07104-005-01)

TEMPORAL AND SPATIAL CHARACTERISTICS OF WATER TEMPERATURE IN XIANGJIABA RESERVOIR

LONG Liang-hong1, XU Hui1, JI Dao-bin1, YAN Meng3, LIU De-fu1,2   

  1. 1. College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China;
    3. Pearl River Hydraulic Research lnstitute, Guangzhou 510611, China;
    2. Hubei Key Laboratory of Ecological Restoration of River-lakes and Algal Utilization, Hubei University of Technology, Wuhan 430068, China
  • Received:2016-10-12 Revised:2017-01-13 Online:2017-05-20
  • Supported by:
    National Basic Research Program of China (2014CB460601);International Science and Technology Cooperation Program of China (2014DFE70070);National Natural Science Foundation of China (51509086);National Science and Technology Major Project(2014ZX07104-005-01)

摘要: 水温是水环境评价的重要因子之一,其对水生态系统中的物理、化学和生物过程起着重要作用。为了分析向家坝水库运行期内的水温分布特征及其成因,本文建立CE-QUAL-W2立面二维水温模型,并基于2014年野外原位监测水温数据对模型可靠性进行了验证,应用其对水温分布进行数值模拟。研究发现向家坝水库水温存在季节性垂向分层,4~6月中上层水体(水深0~60 m)受入流水温和气温回升影响迅速升温,表底温差达10℃,垂向分层加剧;7、8月水库泄洪加快了库区水体交换,底层水温迅速升高,中间等温层水体厚度增加,表底温差减小在2℃内,9月以后表底温差进一步缩小,垂向水温分层逐渐消失。通过分析发现:气象要素、入流水温、电站取水口高程、泄洪方式成为影响向家坝水温分布的主要因素。入流水温的变化只影响水库水温波动范围,对其垂向分层结构影响较低;表层水温受气象条件影响显著;取水口高程和泄洪方式决定了水温的垂向结构。

关键词: 向家坝水库, 水温, CE-QUAL-W2, 分层

Abstract: Water temperature is one of the most important factors in the evaluation of water environment, which plays an important role in the physical, chemical and biological processes. In order to analyze the water temperature distribution in the Xiangjiaba Reservoir, the longitudinal/vertical two-dimensional water temperature model with CE-QUAL-W2 was constructed. The water temperature structure in the Xiangjiaba Reservoir was simulated by the model with the monitoring data. The results showed that seasonal stratification was present in the Xiangjiaba Reservoir, the upper middle water (60 m above) was heated quickly by the warming-up inflow water and the air temperature from April to June, followed by increasing temperature difference between surface and bottom water. The temperature difference reached 10℃ at the end of June, and the vertical stratification became more severe. As the flood discharge in July and August increased, the bottom temperature in the Xiangjiaba Reservoir rose rapidly and the middle isothermal layer increased as well, and the water temperature difference between the surface and the bottom decreased to 2℃. The main factors affecting the temperature distribution in the Xiangjiaba reservoir included inflow water temperature, meteorological, intake elevation and discharging patterns, which affected the whole aptitude, the surface water temperature and vertical temperature stratification structure, respectively.

Key words: Xiangjiaba Reservoir, water temperature, CE-QUAL-W2, stratification

中图分类号: 

  • TV697
[1] 曹广晶,惠二青,胡兴娥.三峡水库蓄水以来近坝区水温垂向结构分析[J].水利学报,2012,43(10):1254-1259.[CAO G J,HUI E Q,HU X E.Analysis of the vertical structure of water temperature in the vicinity area of Three Gorges Dam since the Three Gorges Reservoir impounds[J].Journal of Hydraulic Engineering,2012,43(10):1254-1259.]
[2] DIAO W,CHENG Y G,ZHANG C Z,et al.Three-dimensional prediction of reservoir water temperature by the lattice Boltzmann method:validation[J].Journal of Hydrodynamics,Series B,2015,27(2):248-256.
[3] 魏国良,崔保山,董世魁,等.水电开发对河流生态系统服务功能的影响——以澜沧江漫湾水电工程为例[J].环境科学学报,2008,28(2):235-242.[WEI G L,CUI B S,DONG S K,et al.Impact of hydropower development on river ecosystem service:a case study from the Manwan hydropower project[J].Acta Scientiae Circumstantiae,2008,28(2):235-242.]
[4] 曹永中.龙羊峡水库水温模拟及其对下游河道水温影响研究[D].西安:西安理工大学硕士学位论文,2008.[CAO Y Z.Research on the water temperature simulation for Longyangxia Reservoir and influence on temperature of river downstream[D].Xi'an:Master Dissertation of Xi'an University of Technology,2008.]
[5] 周晨阳,脱友才,李克锋,等.瀑布沟水库水温影响调查[J].四川大学学报(工程科学版),2016,48(S2):27-33.[ZHOU C Y,TUO Y C,LI K F,et al.Investigation into the influence of water temperature of Pubugou Reservoir[J].Journal of Sichuan University (Engineering Science Edition),2016,48(S2):27-33.]
[6] 王雅慧,李兰,卞俊杰.水库水温模拟研究综述[J].三峡环境与生态,2012,34(3):29-36.[WANG Y H,LI L,BIAN J J.Review on reservoir water temperature simulation[J].Environment and Ecology in the Three Gorges,2012,34(3):29-36.]
[7] ORLOB G T,SELNA L G.Temperature variations in deep reservoirs[J].Journal of the Hydraulics Division,1970,96(2):391-410.
[8] JEZNACH L C,TOBIASON J E.Future climate effects on thermal stratification in the Wachusett Reservoir[J].Journal-American Water Works Association,2015,107:E197-E209.
[9] YAN F F,HAN L X,CHEN R X,et al.Water temperature modeling and water temperature stratification pattern of reservoir based on the Three-Dimensional environment fluid dynamics code model[J].Advanced Materials Research,2015,1073-1076:2321-2326.
[10] 郑铁刚,孙双科,柳海涛,等.大型分层型水库下泄水温对取水高程敏感性分析研究[J].水利学报,2015,46(6):714-722,731.[ZHENG T G,SUN S K,LIU H T,et al.Sensibility analysis of intake elevation on water temperature discharged from a large thermal stratified reservoir[J].Journal of Hydraulic Engineering,2015,46(6):714-722,731.]
[11] 张士杰,彭文启.二滩水库水温结构及其影响因素研究[J].水利学报,2009,40(10):1254-1258.[ZHANG S J,PENG W Q.Water temperature structure and influencing factors in Ertan Reservoir[J].Journal of Hydraulic Engineering,2009,40(10):1254-1258.]
[12] 陈永柏,邓云,梁瑞峰.溪洛渡水电站叠梁门取水方式减缓下泄低温水的优化调度[J].长江流域资源与环境,2010,19(3):340-344.[CHEN Y B,DENG Y,LIANG R F.Impact of stoplog intake works on reservoir discharged water temperature[J].Resources and Environment in the Yangtze Basin,2010,19(3):340-344.]
[13] 邓云,李嘉,李然,等.水库调度对溪洛渡电站下游水温的影响[J].四川大学学报(工程科学版),2006,38(5):65-69.[DENG Y,LI J,Li R,et al.Impact of reservoir operation on the water temperature downstream of Xiluodu power station[J].Journal of Sichuan University (Engineering Science Edition),2006,38(5):65-69.]
[14] 骆辉煌,李倩,李翀.金沙江下游梯级开发对长江上游保护区鱼类繁殖的水温影响[J].中国水利水电科学研究院学报,2012,10(4):256-259,266.[LUO H H,LI Q,LI C.The impact of water temperature during the fish reproduction in the upper Yangtze River due to the cascade development in the lower Jinsha River[J].Journal of China Institute of Water Resources and Hydropower Research,2012,10(4):256-259,266.]
[15] 黄薇,陈进,王波.梯级开发对河流径流过程和水温过程均化作用的研究[J].长江流域资源与环境,2010,19(3):335-339.[HUANG W,CHEN J,WANG B.Study on averaging effect of cascade hydropower development on flow and water temperature process[J].Resources and Environment in the Yangtze Basin,2010,19(3):335-339.]
[16] 王波.梯级水库对河流生境因子的累积影响研究[D].武汉:长江科学院硕士学位论文,2008.[WANG B.Cumulative impact study of cascade reservoir on river ecological factors[D].Wuhan:Master Dissertation of Changjiang River Scientific Research Institute,2008.]
[17] ZHANG Z L,SUN B W,JOHNSON B E.Integration of a benthic sediment diagenesis module into the two dimensional hydrodynamic and water quality model-CE-QUAL-W2[J].Ecological Modelling,2015,297:213-231.
[18] ROUNDS S A,BUCCOLA N L.Improved algorithms in the CE-QUAL-W2 water-quality model for blending dam releases to meet downstream water-temperature targets[R].US Geological Survey,2015.
[19] TAK Y H,KIM Y D,CHONG S A,et al.Analysis of water quality impact for water intake in Jinyang Reservoir using CE-QUAL-W2[J].Journal of Korea Water Resources Association,2015,48(10):857-868.
[20] 李艳,邓云,梁瑞峰,等.CE-QUAL-W2在紫坪铺水库的应用及其参数敏感性分析[J].长江流域资源与环境,2011,20(10):1274-1278.[LI Y,DENG Y,LIANG R F,et al.Application of CE-QUAL-W2 to Zipingpu Reservoir and sensitivity analysis of model parameters[J].Resources and Environment in the Yangtze Basin,2011,20(10):1274-1278.]
[21] 陈冬平.基于CE-QUAL-W2模型的山美水库水质模拟[D].福州:福建师范大学硕士学位论文,2012.[CHEN D P.Simulation of water quality in the Shanmei Reservoir based on CE-QUAL-W2 model[D].Fuzhou:Master Dissertation of Fujian Normal University,2012.]
[22] 魏玉珍.CE-QUAL-W2模型应用探讨[J].环境科技,2009,22(S2):40-44.[WEI Y Z.Discussion on application of CE-QUAL-W2 model[J].Environmental Science and Technology,2009,22(S2):40-44.]
[23] 薛联芳,颜剑波.水库水温结构影响因素及与下泄水温的变化关系[J].环境影响评价,2016,38(3):29-31,56.[XUE L F,YAN J B.Study on the influencing factors of reservoir water temperature structure and the relationship with discharge water temperature[J].Environmental Impact Assessment,2016,38(3):29-31,56.]
[24] 许岩.分层水体跃温层形成与异重流演变特性[D].西安:西安建筑科技大学硕士学位论文,2014.[XU Y.Characteristics of the development of thermocline and evolution of density currents in stratified fluids[D].Xi'an:Master Dissertation of Xi'an University of Architecture and Technology,2014.]
[1] 李云良, 姚静, 张小琳, 张奇. 鄱阳湖水体垂向分层状况调查研究[J]. 长江流域资源与环境, 2017, 26(06): 915-924.
[2] 张建伟, 胡克, 岳玮, 刘宝林, 王建, 高擎. 上海城区地面沉降及其对地下水采灌量的响应[J]. 长江流域资源与环境, 2016, 25(04): 567-572.
[3] 乔伟峰, 王亚华, 项灵志. 基于知识与规则的土地利用信息分层提取研究——以南京市都市区为例[J]. 长江流域资源与环境, 2015, 24(07): 1079-1085.
[4] 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337-.
[5] 韩志伟 刘丛强 吴 攀 汪福顺 王宝利 李思亮 灌 瑾. 大坝拦截对河流水溶解组分化学组成的影响分析——以夏季乌江渡水库为例[J]. 长江流域资源与环境, 2009, 18(4): 361-.
[6] 郝红升,李克锋,李然,赵再兴. 取水口高程对过渡型水库水温分布结构的影响[J]. 长江流域资源与环境, 2007, 16(1): 21-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[3] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[4] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[5] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[6] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[7] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[8] 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337 .
[9] 胡鸿兴, 张岩岩, 何伟, 田蓉, 钟鑫, 韩世松, 李思思, 王俊杰陈文方, 杨阳, 陈侈, 邓晗, 文英, 崔雅婷, 李茜,  王璇, 彭菁菁, 高鑫, 唐义. 神农架大九湖泥炭藓沼泽湿地对镉(Ⅱ)、铜(Ⅱ)、铅(Ⅱ)、锌(Ⅱ)的净化模拟[J]. 长江流域资源与环境, 2009, 18(11): 1050 .
[10] 蔡海生, 肖复明, 张学玲. 基于生态足迹变化的鄱阳湖自然保护区生态补偿定量分析[J]. 长江流域资源与环境, 2010, 19(06): 623 .