长江流域资源与环境 >> 2017, Vol. 26 >> Issue (06): 915-924.doi: 10.11870/cjlyzyyhj201706014
李云良1,2, 姚静2, 张小琳2,3, 张奇2,4
LI Yun-liang1,2, YAO Jing2, ZHANG Xiao-lin2,3, ZHANG Qi2,4
摘要: 湖泊水体混合或分层对环境和生态具有显著指示意义,能够提高对未来湖泊水环境状况的评价与管理。针对洪泛鄱阳湖水位季节性变化显著等特点,基于剖面温度和稳定氢氧同位素的调查分析来探明多因素影响下鄱阳湖水体垂向分层或混合状况。结果发现:鄱阳湖枯水期和洪水期水体垂向温差大多处于0~1.0℃,大部分水域温差小于0.5℃,但偶见洪水期部分水域会达到1.5℃的较大温差。总体表明,在季节变化尺度上,鄱阳湖具有较为稳定的等温层,没有明显温度分层特征。同位素分析结果得出,枯水期和洪水期的氢氧稳定同位素值在深度剖面上呈均一分布,表明鄱阳湖水体混合状况较好或完全混合。虽然湖区气象条件和水文条件均是影响鄱阳湖水体分层或混合的重要因素,但鄱阳湖入流和出流等水文条件是影响鄱阳湖水体垂向混合的主要因素。鄱阳湖水体混合同时对湖泊水环境因子的垂向分布特征可能产生重要的影响或控制作用。首次基于大量野外监测有针对性地开展鄱阳湖水体分层研究,结果有助于对湖泊水流结构的深入认识,可为湖区水体污染物的输移模拟与作用机制阐释等方面提供科学参考。
中图分类号:
[1] READ J S, WINSLOW L A, HANSEN G J A, et al. Simulating 2368 temperate lakes reveals weak coherence in stratification phenology[J]. Ecological Modelling, 2014, 291:142-150. [2] BOUFFARD D, BOEGMAN L, ACKERMAN J D, et al. Near-inertial wave driven dissolved oxygen transfer through the thermocline of a large lake[J]. Journal of Great Lakes Research, 2014, 40(2):300-307. [3] BERTONE E, STEWART R A, ZHANG H, et al. Analysis of the mixing processes in the subtropical Advancetown Lake, Australia[J]. Journal of Hydrology, 2015, 522:67-79. [4] READ J S, HAMILTON D P, JONES I D, et al. Derivation of lake mixing and stratification indices from high-resolution lake buoy data[J]. Environmental Modelling & Software, 2011, 26(11):1325-1336. [5] MARTIN J L, MCCUTCHEON S C. Hydrodynamics and transport for water quality modeling[M]. Boca Raton:CRC Press, 1998:355-420. [6] ELÇI Ş. Effects of thermal stratification and mixing on reservoir water quality[J]. Limnology, 2008, 9(2):135-142. [7] CHOWDHURY M R, WELLS M G, COSSU R. Observations and environmental implications of variability in the vertical turbulent mixing in Lake Simcoe[J]. Journal of Great Lakes Research, 2015, 41(4):995-1009. [8] HALDER J, DECROUY L, VENNEMANN T W. Mixing of Rhône River water in Lake Geneva (Switzerland-France) inferred from stable hydrogen and oxygen isotope profiles[J]. Journal of Hydrology, 2013, 477:152-164. [9] TUAN N V, HAMAGAMI K, MORI K, et al. Mixing by wind-induced flow and thermal convection in a small, shallow and stratified lake[J]. Paddy and Water Environment, 2009, 7(2):83-93. [10] HERB W R, STEFAN H G. Dynamics of vertical mixing in a shallow lake with submersed macrophytes[J]. Water Resources Research, 2005, 41(2):W02023. [11] TOWNSEND S A. Hydraulic phases, persistent stratification, and phytoplankton in a tropical floodplain lake (Mary River, Northern Australia)[J]. Hydrobiologia, 2006, 556(1):163-179. [12] ENGLE D, MELACK J M. Methane emissions from an Amazon floodplain lake:Enhanced release during episodic mixing and during falling water[J]. Biogeochemistry, 2000, 51(1):71-90. [13] FORD P W, BOON P I, LEE K. Methane and oxygen dynamics in a shallow floodplain lake:the significance of periodic stratification[J]. Hydrobiologia, 2002, 485(1):97-110. [14] 赵林林, 朱广伟, 陈元芳, 等. 太湖水体水温垂向分层特征及其影响因素[J]. 水科学进展, 2011, 22(6):844-850.[ZHAO L L, ZHU G W, CHEN Y F, et al. Thermal stratification and its influence factors in a large-sized and shallow Lake Taihu[J]. Advances in Water Science, 2011, 22(6):844-850.] [15] 董春颖, 虞左明, 吴志旭, 等. 千岛湖湖泊区水体季节性分层特征研究[J]. 环境科学, 2013, 34(7):2574-2581.[DONG C Y, YU Z M, WU Z Y, et al. Study on seasonal characteristics of thermal stratification in Lacustrine zone of Lake Qiandao[J]. Environmental Science, 2013, 34(7):2574-2581.] [16] 赵巧华, 孙绩华. 夏秋两季洱海、太湖表层混合层的深度变化特征及其机理分析[J]. 物理学报, 2013, 62(3):039203.[ZHAO Q H, SUN J H. The variation features of the surface mixed layer depth in Erhai Lake and Taihu Lake in spring and autumn and their mechanism analyses[J]. Acta Physica Sinica, 2013, 62(3):039203.] [17] 王苏民, 窦鸿身. 中国湖泊志[M]. 北京:科学出版社, 1998. [18] LI X, ZHANG L, YANG G, et al. Impacts of human activities and climate change on the water environment of Lake Poyang Basin, China[J]. Geoenvironmental Disasters, 2015, 2(1):22. [19] SHANKMAN D, KEIM B D, SONG J. Flood frequency in China's Poyang Lake region:trends and teleconnections[J]. International Journal of Climatology, 2006, 26(9):1255-1266. [20] HU Q, FENG S, GUO H, et al. Interactions of the Yangtze River flow and hydrologic processes of the Poyang Lake, China[J]. Journal of Hydrology, 2007, 347(1/2):90-100. [21] LAI X J, JIANG J H, LIANG Q H, et al. Large-scale hydrodynamic modeling of the middle Yangtze River Basin with complex river-lake interactions[J]. Journal of Hydrology, 2013, 492:228-243. [22] LI Y L, ZHANG Q, YAO J, et al. Hydrodynamic and hydrological modeling of the Poyang Lake catchment system in China[J]. Journal of Hydrologic Engineering, 2014, 19(3):607-616. [23] WANG P, LAI G Y, LI L. Predicting the hydrological impacts of the Poyang Lake project using an EFDC model[J]. Journal of Hydrologic Engineering, 2015, 20(12), doi:10.1061/(ASCE)HE.1943-5584.0001240.[DOI:10.1061/(ASCE)HE.1943-5584.0001240] [24] FENG L, HU C M, CHEN X L, et al. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010[J]. Remote Sensing of Environment, 2012, 121:80-92. [25] 姚 静, 张 奇, 李云良, 等. 定常风对鄱阳湖水动力的影响[J]. 湖泊科学, 2016, 28(1):225-236.[YAO J, ZHANG Q, LI Y L, et al. The influence of uniform winds on hydrodynamics of Lake Poyang[J]. Journal of Lake Sciences, 2016, 28(1):225-236.] [26] LI Y L, ZHANG Q, WERNER A D, et al. Investigating a complex lake-catchment-river system using artificial neural networks:Poyang Lake (China)[J]. Hydrology Research, 2015, 12(22):912-928. [27] SÁNCHEZ-ESPAÑA J, ERCILLA M D, CERDÁN F P, et al. Hydrological investigation of a multi-stratified pit lake using radioactive and stable isotopes combined with hydrometric monitoring[J]. Journal of Hydrology, 2014, 511:494-508. [28] SHINADA A, OMORI H, TADA M, et al. Effect of wind on behavior of hypoxic water in Lake Notoro[J]. Scientific Reports of Hokkaido Fisheries Experimental Station, 2009, 75:1-5. [29] LI Y L, ZHANG Q, WERNER A D, et al. The influence of river-to-lake backflow on the hydrodynamics of a large floodplain lake system (Poyang Lake, China)[J]. Hydrological Processes, 2017, 31(1):117-132, doi:10.1002/hyp.10979.[DOI:10.1002/hyp.10979] [30] LI Y L, ZHANG Q, YAO J. Investigation of residence and travel times in a large floodplain lake with complex lake-river interactions:Poyang Lake (China)[J]. Water, 2015, 7(5):1991-2012. [31] LIU X, QIAN K M, CHEN Y W. Effects of water level fluctuations on phytoplankton in a Changjiang River floodplain lake (Poyang Lake):Implications for dam operations[J]. Journal of Great Lakes Research, 2015, 41(3):770-779. |
[1] | 龙良红, 徐慧, 纪道斌, 严萌, 刘德富. 向家坝水库水温时空特征及其成因分析[J]. 长江流域资源与环境, 2017, 26(05): 738-746. |
[2] | 罗文斌, 孟贝, 钟诚. 农地整理项目治理绩效及影响因素研究——以浙江省48个国投项目为例[J]. 长江流域资源与环境, 2017, 26(02): 180-189. |
[3] | 杨超杰, 贺斌, 段伟利, 李冰, 陈雯, 杨桂山. 太湖典型丘陵水源地水质时空变化及影响因素分析——以平桥河流域为例[J]. 长江流域资源与环境, 2017, 26(02): 273-281. |
[4] | 侯祎亮, 安艳玲, 吴起鑫, 吴旌滔, 黄娟, 段少琼, 刘霄. 贵州省三岔河流域水化学特征及其控制因素[J]. 长江流域资源与环境, 2016, 25(07): 1121-1128. |
[5] | 胡雪萍, 李丹青. 城镇化进程中生态足迹的动态变化及影响因素分析——以安徽省为例[J]. 长江流域资源与环境, 2016, 25(02): 300-306. |
[6] | 任平, 洪步庭, 周介铭. 基于空间自相关模型的农村居民点时空演变格局与特征研究[J]. 长江流域资源与环境, 2015, 24(12): 1993-2002. |
[7] | 宋春林, 孙向阳, 王根绪. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究[J]. 长江流域资源与环境, 2015, 24(11): 1860-1869. |
[8] | 杜雪莲, 王世杰, 罗绪强. 黔中喀斯特石漠化区不同小生境常见木本植物水分来源特征[J]. 长江流域资源与环境, 2015, 24(07): 1168-1176. |
[9] | 张维, 李启权, 王昌全, 袁大刚, 罗由林, 张新, 贾荔. 川中丘陵县域土壤pH空间变异及影响因素分析——以四川仁寿县为例[J]. 长江流域资源与环境, 2015, 24(07): 1192-1199. |
[10] | 简敏菲, 简美锋, 李玲玉, 汪斯琛, 余厚平, 余冠军. 鄱阳湖典型湿地沉水植物的分布格局及其水环境影响因子[J]. 长江流域资源与环境, 2015, 24(05): 765-772. |
[11] | 吴必文, 温华洋, 叶朗明, 徐光清. 安徽地区近45年蒸发皿蒸发量变化特征及影响因素初探[J]. 长江流域资源与环境, 2009, 18(7): 620-. |
[12] | 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337-. |
[13] | 何小勤, 戴雪荣, 顾成军. 崇明东滩不同部位的季节性沉积研究[J]. 长江流域资源与环境, 2009, 18(2): 157-. |
[14] | 李 彬,武 恒. 安徽省耕地资源数量变化及其对粮食安全的影响[J]. 长江流域资源与环境, 2009, 18(12): 1115-. |
[15] | 赵国玲, 杨钢桥. 农户宅基地流转意愿的影响因素分析——基于湖北二县市的农户调查研究[J]. 长江流域资源与环境, 2009, 18(12): 1121-. |
|