长江流域资源与环境 >> 2017, Vol. 26 >> Issue (06): 874-881.doi: 10.11870/cjlyzyyhj201706010

• 农业发展 • 上一篇    下一篇

基于时空数据融合的江汉平原水稻种植信息提取

陆俊1,2,3, 黄进良1,2, 王立辉1,2, 裴艳艳1,2,3   

  1. 1. 中国科学院测量与地球物理研究所, 湖北 武汉 430077;
    2. 环境与灾害监测评估湖北省重点实验室, 湖北 武汉 430077;
    3. 中国科学院大学, 北京 100049
  • 收稿日期:2016-11-04 修回日期:2017-01-05 出版日期:2017-06-20
  • 通讯作者: 黄进良,E-mail:hjl@asch.whigg.ac.cn E-mail:hjl@asch.whigg.ac.cn
  • 作者简介:陆俊(1990~),男,硕士研究生,主要从事多源遥感数据融合与农业遥感研究.E-mail:lujun_igg@163.com
  • 基金资助:
    中国科学院科技服务网络计划(KFJ-STS-EDTP-009);湖北省自然科学基金项目(2014CFB376)

PADDY RICE PLANTING INFORMATION EXTRACTION BASED ON SPATIAL AND TEMPORAL DATA FUSION APPROACH IN JIANGHAN PLAIN

LU Jun1,2,3, HUANG Jin-liang1,2, WANG Li-hui1,2, PEI Yan-yan1,2,3   

  1. 1. Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China;
    2. Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei Province, Wuhan 430077, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-11-04 Revised:2017-01-05 Online:2017-06-20
  • Supported by:
    Chinese A Cademy of Sciences Science and Techndogy(KFJ-STS-EDTP-009);Natural Science Foundation of Hubei Province(2014CFB376)

摘要: 及时、准确监测水稻种植面积,对区域粮食政策制定、粮食安全以及农业发展具有重要意义。然而我国南方地区水稻生长期内降水充沛的气候特点使得遥感影像“云污染”现象严重,为解决水稻种植信息遥感提取存在可用数据不足的问题,以江汉平原为例,利用时空数据融合模型(Spatial and Temporal Data Fusion Approach,STDFA)将Landsat 8 OLI与时序MODIS数据融合,重构出具有高时-空分辨率特征数据,然后采用面向对象的SVM分类方法对研究区内水稻种植信息进行提取,结果如下:融合后的红与近红外波段反射率与真实反射率的相关系数分别为0.84和0.81,研究区水稻提取精度为94.46%,Kappa系数为0.91。说明时空融合模型能够较好地重构出高时空分辨率数据,从而实现多云雨地区农作物种植信息遥感提取。

关键词: 江汉平原, 遥感, 时空数据融合, 水稻

Abstract: Paddy rice is an important crop in China. Extracting rice planting information timely and accurately is of great significance for food policy, food security and agricultural development. However, there are two difficulties in extracting rice planting information based on remote sensing in Southern China. One is the paddy rice growth period is accompanied by abundant precipitation. This makes the remote sensing imagery influenced by serious "cloud contamination". The other one is the cultivated land is not concentrated, making the crop classification result influenced by the phenomenon of "salt and pepper". To solve the problem of lacking available data in extracting paddy rice planting information based on remote sensing, we used Spatial and Temporal Data Fusion Approach (STDFA) to fuse the Landsat 8 and time-series MODIS images and gained the data which had the same temporal resolution with MODIS data and the same spatial resolution with Landsat 8 images. The correlation of reflectance about the red and near-infrared of fused data and true data is 0.84 and 0.81. To address the phenomenon of "salt and pepper", we used the object oriented image analysis method to derive the fusion result into several image objects and then classify and map the rice distribution in the study area. Using multi-temporal data has a higher accuracy relative to use single phase data in crop mapping, and that method has become an important way to crop classification based on remote sensing. Normalized difference vegetation index (NDVI) is widely used in vegetation classification. Based on the above two points, we used the time-series red and near-infrared data to calculate the time-series NDVI of each image object. Mostly, time-series NDVI data obtained by satellite included various noise components. To obtain change characteristics of NDVI before and after harvest of winter wheat, we used the HANTs filtering method for nosie reduction. Then we used the NDVI data to map the paddy rice fields though Support Vector Machine (SVM) method. We built the confusion matrix though the samples which came from field measurements and validated the extraction accuracy of rice. The Kappa index is 0.91 and the total classification accuracy is 93.16%. The result showed that:(1) Spatial and Temporal Data Fusion Approach has the ability to rebuild the time-series data which has had the high temporal resolution and the high spatial resolution in Southern China; (2) The object-orient method shows a high accuracy in mapping the paddy rice, suggesting that the object-orient classification method can also reduce the "salt and pepper" phenomenon in the clutter blocks.

Key words: Jianghan plain, remote sensing, spatial and temporal data fusion, paddy rice

中图分类号: 

  • TP79
[1] 中华人民共和国国家统计局. 中国统计年鉴(2015)[M]. 北京:中国统计出版社, 2015.[Compiled of National Bureau of Statistics of China. China statistical yearbook (2015)[M]. Beijing:China Statistics Press, 2015.]
[2] 黄敬峰, 陈 拉, 王 晶, 等. 水稻种植面积遥感估算的不确定性研究[J]. 农业工程学报, 2013, 29(6):166-176.[HUANG J F, CHEN L, WANG J, et al. Uncertainty analysis of rice planting area extraction based on different classifiers using Landsat data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(6):166-176.]
[3] MOSLEH M K, HASSAN Q K, CHOWDHURY E H. Application of remote sensors in mapping rice area and forecasting its production:a review[J]. Sensors, 2015, 15(1):769-791.
[4] 李志鹏, 刘珍环, 李正国, 等. 水稻空间分布遥感提取研究进展与展望[J]. 中国农业资源与区划, 2014, 35(6):9-18.[LI Z P, LIU Z H, LI Z G, et al. Progress and prospect of application of remote sensing to rice spatial distribution[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2014, 35(6):9-18.]
[5] 王 琳, 景元书, 杨沈斌. 基于多时相遥感数据提取水稻种植面积的研究[J]. 中国农业资源与区划, 2013, 34(2):20-25.[WANG L, JING Y S, YANG S B. Study on extraction of rice cropping area using multi-temporal remote sensing data[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2013, 34(2):20-25.]
[6] LECKIE D G. Advances in remote sensing technologies for forest surveys and management[J]. Canadian Journal of Forest Research, 1990, 20(4):464-483.
[7] 黄 维, 黄进良, 王立辉, 等. 多时相遥感影像检测平乐县晚稻种植面积变化[J]. 农业工程学报, 2014, 30(21):174-183.[HUANG W, HUANG J L, WANG L H, et al. Detection of late rice's planting area change in Pingle County based on multi-temporal remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21):174-183.]
[8] 张 煦, 马 驿, 郑 雯, 等. 基于时序MODIS-NDVI的油菜种植面积变化趋势分析——以江汉平原为例[J]. 长江流域资源与环境, 2016, 25(3):412-419.[ZHANG X, MA Y, ZHENG W, et al. Variation trend of rape cultivation area based on MODIS-NDVI time series data——a case in Jianghan plain[J]. Resources and Environment in the Yangtze Basin, 2016, 25(3):412-419.]
[9] 陈艳丽, 莫伟华, 莫建飞, 等. 基于面向对象分类的南方水稻种植面积提取方法[J]. 遥感技术与应用, 2011, 26(2):163-168.[CHEN Y L, MO W H, MO J F, et al. Object-oriented classification for the extraction of rice planting area in South[J]. Remote Sensing Technology and Application, 2011, 26(2):163-168.]
[10] 邬明权, 牛 铮, 王长耀. 利用遥感数据时空融合技术提取水稻种植面积[J]. 农业工程学报, 2010, 26(增刊2):48-52.[WU M Q, NIU Z, WANG C Y. Mapping paddy fields by using spatial and temporal remote sensing data fusion technology[J]. Transactions of the CSAE, 2010, 26(S2):48-52.]
[11] LUNETTA R S, LYON J G, GUINDON B, et al. North American landscape characterization dataset development and data fusion issues[J]. Photogrammetric Engineering & Remote Sensing, 1998, 64(8):821-829.
[12] 石月婵, 杨贵军, 李鑫川, 等. 融合多源遥感数据生成高时空分辨率数据的方法对比[J]. 红外与毫米波学报, 2015, 34(1):92-99.[SHI Y C, YANG G J, LI X C, et al. Intercomparison of the different fusion methods for generating high spatial-temporal resolution data[J]. Journal of Infrared and Millimeter Waves, 2015, 34(1):92-99.]
[13] GAO F, MASEK J, SCHWALER M, et al. On the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2207-2218.
[14] HILKER T, WULDER M A, COOPS N C, et al. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009, 113(8):1613-1627.
[15] 康 峻, 王 力, 牛 铮, 等. 基于局部空间自相关分析的时空数据融合[J]. 遥感技术与应用, 2015, 30(6):1176-1181.[KANG J, WANG L, NIU Z, et al. A spatial and temporal fusion model using local spatial association analysis method[J]. Remote Sensing Technology and Application, 2015, 30(6):1176-1181.]
[16] 邬明权, 牛 铮, 王长耀. 多源遥感数据时空融合模型应用分析[J]. 地球信息科学学报, 2014, 16(5):776-783.[WU M Q, NIU Z, WANG C Y. Assessing the accuracy of spatial and temporal image fusion model of complex area in South China[J]. Journal of Geo-Information Science, 2014, 16(5):776-783.]
[17] WU M Q, NIU Z, WANG C Y, et al. Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model[J]. Journal of Applied Remote Sensing, 2012, 6(1):063507.
[18] 谢登峰, 张锦水, 潘耀忠, 等. Landsat 8和MODIS融合构建高时空分辨率数据识别秋粮作物[J]. 遥感学报, 2015, 19(5):791-805.[XIE D F, ZHANG J S, PAN Y Z, et al. Fusion of MODIS and Landsat 8 images to generate high spatial-temporal resolution data for mapping autumn crop distribution[J]. Journal of Remote Sensing, 2015, 19(5):791-805.]
[19] 曹隽隽, 周 勇, 叶青清, 等. 江汉平原耕地资源空间格局变化分析[J]. 经济地理, 2013, 33(11):130-135.[CAO J J, ZHOU Y, YE Q Q, et al. Analysis of spatial pattern changes of cultivated land resource in Jianghan plain[J]. Economic Geography, 2013, 33(11):130-135.]
[20] HAERTEL V F, SHIMABUKURO Y E. Spectral linear mixing model in low spatial resolution image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(11):2555-2562.
[21] MASELLI F. Definition of spatially variable spectral endmembers by locally calibrated multivariate regression analyses[J]. Remote Sensing of Environment, 2001, 75(1):29-38.
[22] VIEIRA M A, FORMAGGIO A R, RENNÓ C D, et al. Object Based Image Analysis and Data Mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas[J]. Remote Sensing of Environment, 2012, 123:553-562.
[1] 杨燕, 易军, 刘目兴, 张君, 李胜龙. 不同水耕年限稻田土壤水分运动特征研究[J]. 长江流域资源与环境, 2017, 26(02): 257-263.
[2] 李浩杰, 种丹, 范硕, 张世强, 王杰. 近三十年云南九大高原湖泊水面面积遥感变化监测[J]. 长江流域资源与环境, 2016, 25(Z1): 32-37.
[3] 汪丹, 王点, 齐述华. 鄱阳湖水位-淹水面积关系不确定性的分析[J]. 长江流域资源与环境, 2016, 25(Z1): 95-102.
[4] 彭国照, 邢开瑜, 曹艳秋. 未来30a凉山州水稻盛夏低温危害风险分析[J]. 长江流域资源与环境, 2016, 25(Z1): 103-110.
[5] 李话语, 徐磊, 李帆, 冰河, 师永强. 南方丘陵地区河谷城市用地时空演变与驱动分析——以上饶市城区为例[J]. 长江流域资源与环境, 2016, 25(11): 1720-1728.
[6] 刘海, 殷杰, 陈晶, 陈晓玲. 基于遥感影像的丹江口水库水域面积动态变化与原因研究[J]. 长江流域资源与环境, 2016, 25(11): 1759-1766.
[7] 易凤佳, 李仁东, 常变蓉, 施媛媛, 邱娟. 2000~2010年汉江流域湿地动态变化及其空间趋向性[J]. 长江流域资源与环境, 2016, 25(09): 1412-1420.
[8] 刘芳, 何报寅, 张亮, 寇杰锋, 韦金丽. 基于热红外遥感的广西平果县石漠化初步研究[J]. 长江流域资源与环境, 2016, 25(06): 952-956.
[9] 付莲莲, 朱红根, 周曙东. 江西省气候变化的特征及其对水稻产量的贡献——基于“气候-经济”模型[J]. 长江流域资源与环境, 2016, 25(04): 590-598.
[10] 张煦, 马驿, 郑雯, 汪善勤. 基于时序MODIS-NDVI的油菜种植面积变化趋势分析——以江汉平原为例[J]. 长江流域资源与环境, 2016, 25(03): 412-419.
[11] 邹书婷, 朱媛媛, 张永利, 杨琳, 曾菊新. 江汉平原土地资源诅咒效应研究[J]. 长江流域资源与环境, 2015, 24(12): 2038-2046.
[12] 陈彬, 于秀波, 刘宇. 基于中低分辨率遥感影像的分类方法对比研究——以鄱阳湖水鸟栖息地遥感分类为例[J]. 长江流域资源与环境, 2015, 24(11): 1834-1842.
[13] 于欢, 陆伟婷, 曹胜男, 陈长青. 近20年江苏省气温和降水资源变化对稻麦生产的影响[J]. 长江流域资源与环境, 2015, 24(11): 1876-1883.
[14] 刘振波, 张明明, 葛云健, 邱斌. 基于MODIS AOD数据的南京市大气能见度估算[J]. 长江流域资源与环境, 2015, 24(09): 1451-1457.
[15] 尹占娥, 田娜, 殷杰, 迟潇潇. 基于遥感的上海市湿地资源与生态服务价值研究[J]. 长江流域资源与环境, 2015, 24(06): 925-930.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 彭长青,冯金飞,卞新民. 基于遗传算法和GIS的县域水田种植制度空间布局优化[J]. 长江流域资源与环境, 2006, 15(1): 66 -70 .
[2] 唐 琦,虞孝感. 长江三角洲地区经济可持续发展问题初探[J]. 长江流域资源与环境, 2006, 15(3): 269 -273 .
[3] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[4] 王海云,高太忠,高京,黄群贤. 基于AHPLP法的南水北调中线水资源优化配置[J]. 长江流域资源与环境, 2007, 16(5): 588 .
[5] 张 燕, 张 洪, 彭补拙. 土地资源、环境与经济发展的协调性评价[J]. 长江流域资源与环境, 2008, 17(4): 529 .
[6] 黄锡生,唐绍均. 三峡库区环境安全保护法律实施机制探讨[J]. 长江流域资源与环境, 2004, 13(6): 611 -615 .
[7] 张孝飞,林玉锁,俞 飞,李 波. 城市典型工业区土壤重金属污染状况研究[J]. 长江流域资源与环境, 2005, 14(4): 512 -515 .
[8] 廖富强,刘 影, 叶慕亚,郑 林. 鄱阳湖典型湿地生态环境脆弱性评价及压力分析[J]. 长江流域资源与环境, 2008, 17(1): 133 .
[9] 赵姚阳,濮励杰,胡晓添. BP神经网络在城市建成区面积预测中的应用——以江苏省为例[J]. 长江流域资源与环境, 2006, 15(1): 14 -18 .
[10] 许健民, 吕开宇, 娄博杰. 农业生产对土壤盐渍化影响的经济分析[J]. 长江流域资源与环境, 2009, 18(2): 132 .