长江流域资源与环境 >> 2016, Vol. 25 >> Issue (Z1): 95-102.doi: 10.11870/cjlyzyyhj2016Z1013

• 自然灾害 • 上一篇    下一篇

鄱阳湖水位-淹水面积关系不确定性的分析

汪丹1,2, 王点1,2, 齐述华1,2,3   

  1. 1. 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室, 江西 南昌 330022;
    2. 江西师范大学地理与环境学院, 江西 南昌 330022;
    3. 江西省鄱阳湖综合治理与资源开发重点实验室, 江西 南昌 330022
  • 收稿日期:2016-07-22 修回日期:2016-09-30 出版日期:2016-11-26
  • 通讯作者: 齐述华,E-mail:qishuhua11@163.com E-mail:qishuhua11@163.com
  • 作者简介:汪丹(1991~),女,硕士研究生,主要从事生态环境遥感应用.E-mail:738576995@qq.com
  • 基金资助:
    国家自然科学基金项目(41471298,41261069);江西省重大生态安全问题监控协同创新中心资助项目(JXS-EW-00)

ANALYSIS OF THE RELATIONSHIP BETWEEN WATER LEVEL AND NATURAL WATER SURFACE IN POYANG LAKE

WANG Dan1,2, WANG Dian1,2, QI Shu-hua1,2,3   

  1. 1. Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China;
    2. School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China;
    3. Jiangxi Provincial Key Laboratory of Poyang Lake Comprehensive Management and Resources Exploitation, Jiangxi Normal of University, Nanchang 330022, China
  • Received:2016-07-22 Revised:2016-09-30 Online:2016-11-26
  • Supported by:
    the National Natural Science Foundation of China(41471298,41261069);Collaborative Innovation Center for Major Ecological Security Issues of Jiangxi Province and Monitoring Implementation(JXS-EW-00)

摘要: 湖泊淹水范围的时空变化特征往往决定了湖泊湿地的景观结构和功能。鄱阳湖是我国最大淡水湖,水位和淹水范围的季节变化悬殊,鄱阳湖淹水特征对研究鄱阳湖湿地生态系统的结构与功能都具有显著意义,过去很多研究关注鄱阳湖水位-淹水面积关系,不同的研究者得到的水位-淹水面积关系各有差异,表现出一定的不确定性。利用多时相的卫星遥感影像提取的鄱阳湖水面面积的基础上,结合鄱阳湖长时间序列的水位观测资料,探讨鄱阳湖水位-淹水面积关系不确定的原因。研究结果表明:(1)尽管鄱阳湖水面面积与水位表现分段线性关系,但在相同水位条件下,鄱阳湖水面面积表现出较大的不确定性;(2)鄱阳湖水位表现南高北低的空间异质性格局,随着水位增加,鄱阳湖水位的空间异质性降低,并且水面坡降具有季相性,相同水位下退水期的水面坡降大于涨水期的水面坡降;(3)受洲滩地形和“堑秋湖”渔业方式的影响,相同水位下退水期出露洲滩中子湖泊的水面范围大于涨水期中子湖泊水面范围;(4)此外,鄱阳湖采砂显著改变采沙场的湖盆地形,从而改变低水位下的主要采沙场的淹水范围。综上所述,鄱阳湖水位-淹水面积关系的不确定性除了受湖盆地形、“五河”来水、长江顶托等自然原因,还有采砂和堑秋湖渔业方式等人类活动的原因。

关键词: 水面面积, 水面坡降, 鄱阳湖, 遥感

Abstract: The spatial and temporal variations of inundation extent for a lake have a great influence on landscape structure and function of wetland ecosystems. Poyang Lake is the largest freshwater lake in China. Poyang Lake wetland is a very important wetland in the world for biodiversity conservation. It is very important to measure accurately the water surface dynamics of the Poyang Lake. In this paper, the scatterplot between lake water level and MODIS-derived inundation area of the Poyang Lake was used as a starting point, and the uncertainty of inundation areas with lake water levels was discussed. The results showed that:(1) Although a significant linear relationship was found between water level and inundation area for the Poyang Lake, the water surface area shows uncertainty. (2) Water level in Poyang Lake is higher in the south and lower in the north when lake water level is low, and the spatial heterogeneity of water level was decreasing with increasing lake level. (3) Water level slope in Poyang Lake in the time period of water withdrawal was greater than that in flood period. (4) Affected by fishery practice of dish-shaped sublakes, the water surface area of the sublakes in water withdrawal period is greater than that in flood period. Sand mining also changed the water extent around the sandpits when in low lake level. Therefore the inundation extent for Poyang Lake was affected by topography of lake basin, water discharge from the tributaries in Poyang Lake watershed, and the backwater effect of the Yangtze River, as well as by human activities such as sand mining and fishing practice with levees.

Key words: Inundation area, Water level slope, Poyang Lake, Remote sensing

中图分类号: 

  • K292
[1] DEUTSCH M, RUGGLES F, GUSS P, et al. Mapping the 1973 Mississippi floods from the Earth resource technology satellites[C]//International Symposium on Remote Rensing and Water Resource Management, American Water Resource Association. Burlington, Ontario, 1973:39-55.
[2] RANGO A, SALOMONSON V V. Regional flood mapping from space[J]. Water Resource Research, 1974, 10(3):473-484.
[3] 程彦培, 张发旺, 董华, 等. 基于MODIS卫星数据的中亚地区水体动态监测研究[J]. 水文地质工程地质, 2010, 37(5):33-37.[CHENG Y P, ZHAGN F W, DONG H, et al. Wetland dynamic monitoring in central Asia based on MODIS image[J]. Hydrogeology & Engineering Geology, 2010, 37(5):33-37.]
[4] RODRÍGUEZ Y C, ANJOUMI A E, GÓMEZ J A D, et al. Using Landsat image time series to study a small water body in Northern Spain[J]. Environmental Monitoring and Assessment, 2014, 186(6):3511-3522.
[5] 陈海珍, 石铁柱, 邬国锋. 武汉市湖泊景观动态遥感分析(1973-2013年)[J]. 湖泊科学, 2015, 27(4):745-754.[CHEN H Z, SHI T Z, WU G F. The dynamic analysis of lake landscape of Wuhan City in recent 40 years[J]. Journal of Lake Sciences, 2015, 27(4):745-754.]
[6] 齐述华, 舒晓波, BROWN D, 等. 基于遥感和历史水位记录的鄱阳湖区淹没风险制图[J]. 湖泊科学, 2009, 21(5):720-724.[QI S H, SHU X B, BROWN D, et al. Flooding hazard mapping for Poyang Lake Region with remote sensing and water level records[J]. Journal of Lake Sciences, 2009, 21(5):720-724.]
[7] 李鹏, 封志明, 姜鲁光, 等. 鄱阳湖天然湖面遥感监测及其与水位关系研究[J]. 自然资源学报, 2013, 28(9):1556-1568.[LI P, FENG Z M, JIANG L G, et al. Natural water surface of Poyang Lake monitoring based on remote sensing and the relationship with water level[J]. Journal of Natural Resources, 2013, 28(9):1556-1568.]
[8] 刘洋, 尤慧, 程晓, 等. 基于长时间序列MODIS数据的鄱阳湖湖面面积变化分析[J]. 地球信息科学学报, 2013, 15(3):469-475.[LIU Y, YOU H, CHENG X, et al. Estimation of variation of Poyang Lake area based on long-term MODIS observations[J]. Journal of Geo-Information Science, 2013, 15(3):469-475.]
[9] SANYAL J, LU X X. GIS-based flood hazard mapping at different administrative scales:a case study in Gangetic West Bengal, India[J]. Singapore Journal of Tropical Geography, 2006, 27(2):207-220.
[10] ANDREOLI R, YESOU H, LI J, et al. Synergy of low and medium resolution ENVISAT ASAR and optical data for lake watershed monitoring:case study of Poyang Lake (Jiangxi, P. R. China)[C]//Proceedings of the Envisat Symposium 2007. Montreux, Switzerland:European Space Agency, 2007.
[11] QI S H, BROWN D G, TIAN Q, et al. Inundation extent and flood frequency mapping using LANDSAT imagery and digital elevation models[J]. GIScience & Remote Sensing, 2009, 46(1):101-127.
[12] 王庆, 廖静娟. 基于SAR数据的鄱阳湖水体提取及变化监测研究[J]. 国土资源遥感, 2010(4):91-97.[WANG Q, LIAO J J. Water area extraction and change detection of the Poyang Lake using SAR data[J]. Remote Sensing for Land & Resources, 2010(4):91-97.]
[13] FENG L, HU C M, CHEN X L, et al. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010[J]. Remote Sensing of Environment, 2012, 121:80-92.
[14] CAI X B, GAN W X, JI W, et al. Optimizing remote sensing-based level-area modeling of large lake wetlands:case study of Poyang Lake[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(2):471-479.
[15] LIU Y B, WU G P, ZHAO X S. Recent declines in China's largest freshwater lake:trend or regime shift?[J]. Environmental Research Letters, 2013, 8(1):014010.
[16] 李辉, 李长安, 张利华, 等. 基于MODIS影像的鄱阳湖湖面积与水位关系研究[J]. 第四纪研究, 2008, 28(2):332-337.[LI H, LI C A, ZHANG L H, et al. Relationship between water level and water area in Poyang Lake based on MODIS image[J]. Quaternary Sciences, 2008, 28(2):332-337.]
[17] 郭华, HU Q, 张奇. 近50年来长江与鄱阳湖水文相互作用的变化[J]. 地理学报, 2011, 66(5):609-618.[GUO H, HU Q, ZHAGN Q. Changes in hydrological interactions of the Yangtze River and the Poyang Lake in China during 1957-2008[J]. Acta Geographica Sinica, 2011, 66(5):609-618.]
[18] LAI X J, SHANKMAN D, HUBER C, et al. Sand mining and increasing Poyang Lake's discharge ability:a reassessment of causes for lake decline in China[J]. Journal of Hydrology, 2014, 519:1698-1706.
[19] 江丰, 齐述华, 廖富强, 等. 2001-2010年鄱阳湖采砂规模及其水文泥沙效应[J]. 地理学报, 2015, 70(5):837-845.[JIANG F, QI S H, LIAO F Q, et al. Hydrological and sediment effects from sand mining in Poyang Lake during 2001-2010[J]. Acta Geographica Sinica, 2015, 70(5):837-845.]
[20] 唐玥, 谢永宏, 李峰, 等. 1989-2011年东洞庭湖草洲出露面积变化及其与水位响应的关系[J]. 应用生态学报, 2013, 24(11):3229-3236.[TANG Y, XIE Y H, LI F, et al. Area changes of emergent herbaceous wetlands in relation to water level in East Dongting Lake, China in 1989-2011[J]. Chinese Journal of Applied Ecology, 2013, 24(11):3229-3236.]
[21] 杜涛, 熊立华, 易放辉, 等. 基于MODIS数据的洞庭湖水体面积与多站点水位相关关系研究[J]. 长江流域资源与环境, 2012, 21(6):756-765.[DU T, XIONG L H, YI F H, et al. Relation of the water area of Dongting Lake to the water levels of hydrological stations based on MODIS images[J]. Resources and Environment in the Yangtze Basin, 2012, 21(6):756-765.]
[22] 吉红霞, 范兴旺, 吴桂平, 等. 离散型湖泊水体提取方法精度对比分析[J]. 湖泊科学, 2015, 27(2):327-334.[JI H X, FAN X W, WU G P, et al. Accuracy comparison and analysis of methods for water area extraction of discrete lakes[J]. Journal of Lake Sciences, 2015, 27(2):327-334.]
[23] 丁莉东, 吴昊, 王长健, 等. MODIS图像湖泊水体信息的快速识别与制图[J]. 海洋测绘, 2006, 26(6):31-34.[DING L D, WU H, WANG C J, et al. Quick recognition and mapping of lake water information based on MODIS image[J]. Hydrographic Surveying and Charting, 2006, 26(6):31-34.]
[24] HUANG S F, LI J G, XU M. Water surface variations monitoring and flood hazard analysis in Dongting Lake area using long-term Terra/MODIS data time series[J]. Natural Hazards, 2012, 62(1):93-100.
[25] 孙芳蒂, 赵圆圆, 宫鹏, 等. 动态地表覆盖类型遥感监测:中国主要湖泊面积2000~2010年间逐旬时间尺度消长[J]. 科学通报, 2014, 59(4/5):397-411.[SUN F D, ZHAO Y Y, GONG P, et al. Monitoring dynamic changes of global land cover types:fluctuations of major lakes in China every 8 days during 2000-2010[J]. Chinese Science Bulletin, 2014, 59(2):171-189.]
[26] 张方方, 齐述华, 廖富强, 等. 鄱阳湖湿地出露草洲分布特征的遥感研究[J]. 长江流域资源与环境, 2011, 20(11):1361-1367.[ZHANG F F, QI S H, LIAO F Q, et al. Analysis of distribution features of the emersed grassland in Poyang Lake based on remote sensing[J]. Resources and Environment in the Yangtze Basin, 2011, 20(11):1361-1367.]
[27] 刘小东, 任兵芳. 鄱阳湖低枯水位变化特征与成因探讨[J]. 人民长江, 2014, 45(4):12-16.[LIU X D, REN B F. Analysis on variation characteristics and genesis of lower water level of Poyang Lake[J]. Yangtze River, 2014, 45(4):12-16.]
[28] 王卷乐, 胡振鹏, 冉盈盈, 等. 鄱阳湖湿地烧荒遥感监测及其影响分析[J]. 自然资源学报, 2013, 28(4):656-667.[WANG J L, HU Z P, RAN Y Y, et al. Study on moorburn remote sensing monitoring on Poyang Lake wetland area and its influence[J]. Journal of Natural Resources, 2013, 28(4):656-667.]
[29] 邓志民, 张翔, 肖洋, 等. 鄱阳湖水位演变及其影响因子分析[J]. 武汉大学学报(工学版), 2015, 48(5):615-621.[DENG Z M, ZHANG X, XIAO Y, et al. Study of evolution of water level in Poyang Lake and impact factors[J]. Engineering Journal of Wuhan University, 2015, 48(5):615-621.]
[30] FENG L, HU C M, CHEN X L, et al. MODIS observations of the bottom topography and its inter-annual variability of Poyang Lake[J]. Remote Sensing of Environment, 2011, 115(10):2729-2741.
[31] 齐述华, 刘影, 于秀波, 等. "堑秋湖"对鄱阳湖越冬候鸟栖息地功能影响的辨析[J]. 长江流域资源与环境, 2011, 20(S1):18-21.[QI S H, LIU Y, YU X B, et al. Effect of lake enclosed in autumn on the habitat of winter bird in Poyang Lake[J]. Resources and Environment in the Yangtze Basin, 2011, 20(S1):18-21.]
[1] 陆俊, 黄进良, 王立辉, 裴艳艳. 基于时空数据融合的江汉平原水稻种植信息提取[J]. 长江流域资源与环境, 2017, 26(06): 874-881.
[2] 李云良, 姚静, 张小琳, 张奇. 鄱阳湖水体垂向分层状况调查研究[J]. 长江流域资源与环境, 2017, 26(06): 915-924.
[3] 张小琳, 张奇, 王晓龙. 洪泛湖泊水位-流量关系的非线性特征分析[J]. 长江流域资源与环境, 2017, 26(05): 723-729.
[4] 李金前, 王吉, 刘亚军, 邹锋, 马燕天, 吴兰. 水位高程变化对湿地土壤微生物代谢功能的影响研究——以蚌湖为例[J]. 长江流域资源与环境, 2017, 26(05): 730-737.
[5] 侯立春, 林振山, 琚胜利, 赖正清, 吴连霞, 张志荣. 环鄱阳湖旅游圈旅游经济联系与区域发展策略[J]. 长江流域资源与环境, 2017, 26(04): 508-518.
[6] 齐凌艳, 黄佳聪, 高俊峰, 郭玉银. 鄱阳湖枯水水位及流速时空分布模拟[J]. 长江流域资源与环境, 2017, 26(04): 572-584.
[7] 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208.
[8] 李冰, 杨桂山, 万荣荣, 刘宝贵, 戴雪, 许晨. 鄱阳湖出流水质2004~2014年变化及其对水位变化的响应:对水质监测频率的启示[J]. 长江流域资源与环境, 2017, 26(02): 289-296.
[9] 戴雪, 何征, 万荣荣, 杨桂山. 近35 a长江中游大型通江湖泊季节性水情变化规律研究[J]. 长江流域资源与环境, 2017, 26(01): 118-125.
[10] 张范平, 方少文, 周祖昊, 温天福, 张梅红. 鄱阳湖水位多时间尺度动态变化特性分析[J]. 长江流域资源与环境, 2017, 26(01): 126-133.
[11] 朱婧瑄, 齐述华, 刘贵花, 王点, 熊梦雅. 2000~2013年鄱阳湖流域蒸散量时空变化[J]. 长江流域资源与环境, 2016, 25(Z1): 9-16.
[12] 李浩杰, 种丹, 范硕, 张世强, 王杰. 近三十年云南九大高原湖泊水面面积遥感变化监测[J]. 长江流域资源与环境, 2016, 25(Z1): 32-37.
[13] 李云良, 张小琳, 赵贵章, 姚静, 张奇. 鄱阳湖区地下水位动态及其与湖水侧向水力联系分析[J]. 长江流域资源与环境, 2016, 25(12): 1894-1902.
[14] 李话语, 徐磊, 李帆, 冰河, 师永强. 南方丘陵地区河谷城市用地时空演变与驱动分析——以上饶市城区为例[J]. 长江流域资源与环境, 2016, 25(11): 1720-1728.
[15] 李云良, 姚静, 李梦凡, 张奇. 鄱阳湖水流运动与污染物迁移路径的粒子示踪研究[J]. 长江流域资源与环境, 2016, 25(11): 1748-1758.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[3] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[4] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[5] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[6] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[7] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[8] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[9] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .