长江流域资源与环境 >> 2019, Vol. 28 >> Issue (06): 1334-1343.doi: 10.11870/cjlyzyyhj201906009

• 自然资源 • 上一篇    下一篇

基于随机森林和Sentinel-2影像数据的低山丘陵区土地利用分类——以重庆市江津区李市镇为例

张卫春1,3 ,刘洪斌1,3* ,武  伟2,3   

  1. (1.西南大学资源环境学院, 重庆 400716;2. 西南大学计算机与信息科学学院, 重庆 400715;3. 重庆市数字农业重点实验室, 重庆 400716)
  • 出版日期:2019-06-20 发布日期:2019-06-20

Classification of Land Use in Low Mountain and Hilly Area Based on Random Forest and Sentinel-2 Satellite Data:A Case Study of Lishi Town,Jiangjin, Chongqing 

 ZHANG Wei-chun1,3 , LIU Hong-bin1,3, WU Wei2,3   

  1. (1.College of Resources and Environment, Southwest University, Chongqing 400716, China; 2. College of Computer and Information Science, Southwest University, Chongqing 400715, China; 3. Chongqing Key Laboratory of Digital Agriculture, Chongqing 400716, China)
  • Online:2019-06-20 Published:2019-06-20

摘要: 精准的土地利用信息是土地资源监测和管理的基础。为提高低山丘陵区域的土地利用分类精度,选取重庆市江津区李市镇为研究案例,基于随机森林方法,以Sentinel-2影像数据和地形因子为数据源,提取3种变量(传统遥感数据,红边遥感数据和地形因子),合计23个特征指标,构建3个具有不同输入变量的组合模型,以提取研究区土地利用信息,分析变量的重要性。结果表明:(1)传统遥感数据模型中顺序添加红边遥感数据和地形因子,总体分类精度分别为86.54%,87.19%,88.61%;Kappa系数分别为 0.800 9,0.810 2,0.831 4;(2)对模型精度有重要影响的特征指标依次是波段B2(Blue),B4(Red),B3(Green),改进归一化差异水体指数(MNDWI)和波段B5(Vegetation Red Edge 1);(3)基于随机森林的遥感数据和地形因子的组合方法,是获取研究区高精度土地利用信息的一种有效手段。研究成果可以为地形复杂区域的土地利用分类提供参考。

Abstract: Accurate and efficient information of land use types is of great importance for monitoring and management of land resources. In order to improve the accuracy of land use classification in low mountain and hilly areas, the current study applied random forest with Sentinel-2 images and terrain indicators to classify land use types in Lishi town, Jiangjing, Chongqing. A total of 23 features involved three kind of variables, namely, traditional remote sensing indices, red-edge remote sensing indices and topographic indices were derived from the Sentinel-2 images and digital elevation model. Three models with different inputs were developed and compared. The accurate map of land use types and the relative importance of these indices to the classification were obtained by the best model. The results showed that the values of overall accuracy and Kappa coefficient were 86.54% and 0.800 9 for the model with traditional remote sensing indices, 87.17% and 0.810 2 for the model with traditional remote sensing indices and red-edge remote sensing indices, 88.61% and 0.831 4 for the model with traditional remote sensing indices, red-edge remote sensing indices, and terrain indicators, respectively. The top five importance variables was ranked in order of B2(Blue), B4(Red), B3(Green), Modified Normalized Difference Water Index(MNDWI), and B5(Vegetation Red Edge(1) The random forest with Sentinel-2 images and terrain indicators could be a suitable tool for producing accurate land use information over the study area. The results could provide valuable information for land use classification in the areas with complex topography.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹银贵,王 静,程 烨,刘爱霞,许 宁,郝 银,饶彩霞. 三峡库区土地利用变化与影响因子分析[J]. 长江流域资源与环境, 2007, 16(6): 748 .
[2] 郝红升,李克锋,李然,赵再兴. 取水口高程对过渡型水库水温分布结构的影响[J]. 长江流域资源与环境, 2007, 16(1): 21 -25 .
[3] 伍新木,廖 丹,严 瑾. 制度创新:依托武汉建设长江中游城市群[J]. 长江流域资源与环境, 2004, 13(1): 1 -6 .
[4] 李翀,廖文根,彭静,叶柏生. 宜昌站1900~2004年生态水文特征变化[J]. 长江流域资源与环境, 2007, 16(1): 76 -80 .
[5] 张心怡,刘 敏,孟 飞. 基于RS和GIS的上海城建用地扩展研究[J]. 长江流域资源与环境, 2006, 15(1): 29 -33 .
[6] 夏 敏,赵小敏,张佳宝,刘友兆,曾志强. 基于GIS的土地适宜性评价决策支持系统——以南京市江宁区淳化镇为例[J]. 长江流域资源与环境, 2006, 15(3): 325 -329 .
[7] 赵小风| 黄贤金| 严长清| 李衡| 张兴榆. 基于RAGAAHP的工业用地集约利用评价——以江苏省开发区为例[J]. 长江流域资源与环境, 2011, 20(11): 1315 .
[8] 赵 丹| 张京祥. 高速铁路影响下的长三角城市群可达性空间格局演变[J]. 长江流域资源与环境, 2012, 21(04): 391 .
[9] 卢碧林 |严平川 |田小海 |金卫斌 | 刘章勇. 湖北省主要大中型水库富营养状况及特征分析[J]. 长江流域资源与环境, 2012, 21(05): 634 .
[10] 刘春池| 高欣| 林鹏程| 杨少荣| 刘焕章| 曹文宣. 葛洲坝水库鱼类群落结构特征研究[J]. 长江流域资源与环境, 2012, 21(07): 843 .