长江流域资源与环境 >> 2019, Vol. 28 >> Issue (07): 1652-1662.doi: 10.11870/cjlyzyyhj201907015

• 生态环境 • 上一篇    下一篇

长江干流浮游细菌群落结构及影响因素

吴晓冰1,2,3,叶飞1,2,4,姜毅1,2,吴胜军1,2,刘鸿1,2,4,王川4,张炜1*,王雨1,2,4*   

  1. (1. 中国科学院重庆绿色智能技术研究院,重庆 400714;2. 中国科学院水库水环境重点实验室,
    重庆 400714;3. 中国科学院大学,北京 100049;4. 广州大学大湾区环境研究院,广东 广州 510006)
  • 出版日期:2019-07-20 发布日期:2019-07-25

Bacterioplankton Community Structure in the Mainstream of Yangtze River and Driving Factors

WU Xiao-bing1,2,3, YE Fei1,2,4, JIANG Yi1,2, WU Sheng-jun1,2,  LIU Hong1,2,4, WANG Chuan4, ZHANG Wei1, WANG Yu1,2,4   

  1. (1. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; 
    2. Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China; 
    3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. Institute of Environmental Research at 
    Greater Bay, Guangzhou University, Guangzhou 510006, China)
  • Online:2019-07-20 Published:2019-07-25

摘要: 为研究长江干流浮游细菌群落结构的空间分布规律及其环境影响因素,针对细菌16S rRNA基因,采用定量PCR和高通量测序技术,对2015年和2016年采集的长江干流自四川泸州到上海吴淞口共计40个样点进行分析。结果表明:水体中浮游细菌16S rRNA基因丰度为2.64×106~1.44×109 copies/L。上游(泸州至秭归)、中游(宜昌至湖口)和下游水体(湖口至上海入海口)的α多样性在3组间都没有呈现出显著差异性。长江干流浮游细菌在门水平上主要由变形菌门(Proteobacteria,7.49%~86.53%)、放线菌门(Actinobacteria,0.27%~54.72%)、厚壁菌门(Firmicutes,0.03%~90.95%)、拟杆菌门(Bacteroidetes,0.50%~45.36%)和异常球菌-栖热菌门(Deinococcus-Thermus,0.00%~23.96%)构成。在属或科水平上主要由丛毛单胞菌科(Comamonadaceae,0.03%~65.67%)、CL500-29_marine_group(0.00%~24.23%)、hgcI_clade(0.00%~28.82%)、芽孢杆菌属(Bacillus,0.00%~90.88%)和氢噬胞菌属(Hydrogenophaga,0.03%~38.55%)组成。从上中下游水体的浮游细菌群落组成来看,上游水体相对丰度最高的类群为Bacillus(0.00%~90.88%),中游和下游为Comamonadaceae(分别为0.60%~65.67%和2.87%~50.64%)。造成上中下游水体中浮游细菌群落组成差异的环境因子各不相同:影响上游的主要为pH和悬浮颗粒物(SS),影响中游的主要为溶解氧(DO),影响下游的主要为DO、水温(WT)和总磷(TP)。

Abstract: In order to study the community structure of bacterioplankton and the driving factors in the mainstream of Yangtze River, Quantitative Real-time PCR and high-throughtput sequencing targeting on the bacterial 16S rRNA gene were used. Water samples were collected from 40 sites from Luzhou (Sichuan province) to Wusongkou (Shanghai city) along the mainstream of Yangtze River. The results show that the 16S rRNA gene abundance of all sites range from 2.64×106 copies/L to 1.44×109 copies/L. There is no significant difference in α-diversity between upper (from Luzhou to Zigui), middle (from Yichang to Hukou) and lower (from Huayang to estuary) reaches. Meanwhile, the dominant phyla in the mainstream of Yangtze River are Proteobacteria (7.49%~86.53%), Actinobacteria (0.27%~54.72%), Firmicutes (0.03%~90.95%), Bacteroidetes (0.50%~45.36%) and Deinococcus-Thermus (0.00%~23.96%). The dominant taxa at genus or family level include Comamonadaceae (0.03%~65.67%), CL500-29_marine_group (0.00%~24.23%), hgcI_clade (0.00%~28.82%)、Bacillus (0.00%~90.88%) and Hydrogenophaga (0.03%~38.55%). Moreover, the taxa with the highest relative abundance in upper reaches is Bacillus (0.00~90.88%), while it is Comamonadaceae in middle and lower reaches (0.60%~65.67% and 0.03%~65.67%, respectively). Additionally, the driving factors of these differences of bacterioplankton community structure vary in three reaches. The key factors affected the community structure are pH and suspend solids (SS) in upper reaches, dissolved oxygen (DO) in middle reaches, and DO, water temperature (WT) and total phosphorus (TP) in lower reaches. 


No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂钠, 于坤香. 我国世界自然遗产地旅游业环境经济核算思路[J]. 长江流域资源与环境, 2009, 18(2): 121 .
[2] 刘 健,陈 星,彭恩志,周学东. 气候变化对江苏省城市系统用电量变化趋势的影响[J]. 长江流域资源与环境, 2005, 14(5): 546 -550 .
[3] 郑明媚,李满春,毛 亮,黎韶光. GIS支持的县域人口迁移空间模型研究——以浙江省临安市为例[J]. 长江流域资源与环境, 2006, 15(3): 281 -286 .
[4] 刘传江,朱劲松. 三峡库区土地资源承载力现状与可持续发展对策[J]. 长江流域资源与环境, 2008, 17(4): 522 .
[5] 聂 坚, 白永平, 孙 克, 王世金. “红三角”地区城镇体系结构分形研究[J]. 长江流域资源与环境, 2008, 17(5): 673 .
[6] 陈振杰, 李满春, 刘永学. 基于GIS的桐庐县农村居民点空间格局研究[J]. 长江流域资源与环境, 2008, 17(2): 180 .
[7] 刘云霞,|陈 爽|彭立华,,范成新. 基于格网的太湖生态环境质量空间评价[J]. 长江流域资源与环境, 2007, 16(4): 494 .
[8] 胥 晓|郑伯川|陈友军. 嘉陵江流域植被景观的空间格局特征[J]. 长江流域资源与环境, 2007, 16(3): 373 .
[9] 胥勤勉,杨达源,董 杰,周 彬. 滇池水环境治理的“调水”“活水”工程[J]. 长江流域资源与环境, 2006, 15(1): 116 -119 .
[10] 胡鹤鸣,陈永灿,李玲,曾成杰. 旋转水射流冲击压强的实验分析[J]. 长江流域资源与环境, 2007, 16(1): 42 -47 .