长江流域资源与环境 >> 2019, Vol. 28 >> Issue (10): 2513-2526.doi: 10.11870/cjlyzyyhj201910023

• 自然气候 • 上一篇    下一篇

非平稳性条件下淮河流域极端气温时空演变特征及遥相关、环流特征分析

温庆志1,2,孙鹏1,3,4*,张强3,4,姚蕊1,2,王友贞5,卜凡蕊1,夏敏1   

  1. (1. 安徽师范大学地理与旅游学院,安徽 芜湖 241002;2. 江淮流域地表过程与区域响应安徽省重点实验室,安徽 芜湖 241002;3. 北京师范大学地表过程与资源生态国家重点实验室,北京 100875;4. 北京师范大学,环境演变与自然灾害教育部重点实验室,北京师范大学,北京 100875;5. 安徽省水利部淮河水利委员会水利科学研究院,水利水资源安徽省重点实验室,安徽 蚌埠 233000)
  • 出版日期:2019-10-20 发布日期:2019-11-05

Non-stationary Characteristic of Extreme Temperature and Climate-related Impacts, Circulation Character in the Huai River Basin

WEN Qing-zhi1,2, SUN Peng1,3,4, ZHANG Qiang3,4, YAO Rui1,2, WANG You-zhen5, BU Fan-rui1,2,XIA Min1   

  1. (1. School of Geography and Tourism, Anhui Normal University, Anhui 241002, China; 2. Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huai River Basin, Anhui Province, School of Geography and tourism, Anhui Normal University, Wuhu 241002,China; 3. State Key Laboratory of Surface Process and Resource Ecology, Beijing Normal University, Beijing 100875, China; 4.Key Laboratory of Environmental Change and Natural Disaster, Ministry of education, Beijing Normal University, Beijing 100875,China; 5. Key Laboratory of Water Conservancy and Water Resources of Anhui Province, 
    Water Resources Research Institute of Anhui Province and Huaihe River China, Bengbu 233000, China)
  • Online:2019-10-20 Published:2019-11-05

摘要: 在全球升温的背景下,为掌握淮河流域极端气温的时空变化特征及其变化规律,以提高淮河流域对极端气温灾害的应对能力。以淮河流域1961~2016年149个气象站点、太平洋气候因子和NCEP/NCAR再分析数据为基础,利用优化的非平稳性(Transformed-Stationary)极值分析方法、空间Ward-like层次聚类分析方法、M-K趋势分析和经验正交函数分析方法(Empirical orthogonal function)对淮河流域极端气温进行分析。结果发现:(1)年最高气温在1960和2000s为增加趋势,2000s后增加趋势不显著;从1970~1980s,年最高气温呈减小趋势;年最低气温在1960s呈下降趋势,1970s以后年最低气温呈增加趋势;(2)年最高气温重现期对应的温度多数站点表现出非平稳态并显著上升,增幅达1.5℃。年最低气温均呈现上升趋势,在1978年前后出现上升的拐点,在2000年前后暖化现象有所减缓。年最高气温距离海洋越近,上升趋势越显著;年最低气温则相反。(3)不同重现期年最高气温显著增加趋势,主要分布在淮河的东北部和东南部地区,中西部地区呈显著减小趋势,年最低气温的空间分布恰好与其相反。(4)北太平洋海温异常显著的影响着淮河流域的7、8月极端气温的变化,淮河流域的极端气温的非平稳变化有着与西太平洋和北太平洋显著正相关关系,与东太平洋呈显著负相关关系。淮河流域12~1月气温异常与渤海海温异常同步、与厄尔尼诺或拉尼娜同步变化;7~8月温度异常与12~1月的温度异常结果相反。环流特征分析表明,淮河流域冬季暖化现象受到东北地区暖化的影响;7~8月温度的变化主要由青藏高原低压和蒙古低压在逐年减弱而改变环流特征造成,东南区域极端高温增加,西部区域降水增多、极端高温的降低。

Abstract: Based on daily maximum and minimum temperatures at 149 stations during 1961-2016, Pacific climatic factor and NCEP/NCAR reanalysis data were analyzed based on Transformed-Stationary analysis method, hierarchical clustering with spatial constraints, MM-K (Modified Mann-Kendall) trend analysis and EOF (empirical orthogonal function). In this study the spatial and temporal characteristics of extreme temperature in the Huai river basin were analysed and revealed the impact of extreme temperature. Results indicated that: (1) The annual maximum temperature (AHT) have an increasing trend in 1960s and 2000s, but the AHT was decrease trend from the 1970s to the 1980s. However, the annual minimum temperature (ALT) in 1960s showed a decreasing trend, and The ALT are in increasing trend after 1970 (the increasing trend is significant at >95% confidence level after 2000). (2) AHT of return period in zone 1 and zone 3 show the stationary characteristics, and AHT of return period in other stations increased by 1.5℃. The ALT of return period had an increasing trend from 1978. The closer the AHT is to the ocean, the more significant the increase trend will be. (3) In the northeast and southeast of the Huai river baisn, the increasing trend of AHT are mainly distributed in the central and western. While the spatial distribution of ALT is the opposite of that of the central and western regions. (4) The North Pacific sea level temperature anomaly (STA) changes significantly affect the Huai river basin in Summer. Extreme temperatures of the non-stationary change have positive related to the western Pacific and north Pacific and negative correlated with the eastern Pacific. From Winter, the land temperature anomalies (LTA) synchronized with the STA in the Bohai Sea and with the changes of El Nino or La Nina. The LTA in Summer were contrary to those in Winter. The analysis of circulation characteristics shows that Winter warming in the Basin is affected by the warming in northeast China and change in Summer in the Basin is affected by the depression of Qinghai-Tibet plateau and Mongolia.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘春霞, 李月臣, 杨华. 三峡库区(重庆段)石漠化敏感性评价及空间分异特征[J]. 长江流域资源与环境, 2011, 20(3): 291 .
[2] 曹志宏 |陈志超 |郝晋珉. 中国城乡居民食品消费变化趋势分析[J]. 长江流域资源与环境, 2012, 21(10): 1173 .
[3] 李思思,张亮,杜耘,刘蜀治. 面源磷负荷改进输出系数模型及其应用[J]. 长江流域资源与环境, 2014, 23(09): 1330 .
[4] 孙鸿鹄, 程先富, 戴梦琴, 王祥, 康海迪. 基于DEMATEL的区域洪涝灾害恢复力影响因素及评价指标体系研究——以巢湖流域为例[J]. 长江流域资源与环境, 2015, 24(09): 1577 -1583 .
[5] 姚振兴, 陈庆强, 杨钦川. 近60年来崇明岛东部淤涨速率初探[J]. 长江流域资源与环境, 2017, 26(05): 698 -705 .
[6] 刘冀, 孙周亮, 张特, 程雄, 董晓华, 谈新. 基于不同卫星降雨产品的澴水花园流域径流模拟比较研究[J]. 长江流域资源与环境, 2018, 27(11): 2558 -2567 .
[7] 谢五三, 吴 蓉, 丁小俊. 基于FloodArea模型的城市内涝灾害风险评估与预警[J]. 长江流域资源与环境, 2018, 27(12): 2848 -2855 .
[8] 孔锋. 基于不同等级降雨视角透视气候工程对中国降雨结构的影响[J]. 长江流域资源与环境, 0, (): 0 .
[9] 刘晓阳 黄晓东 丁志伟. 长江经济带县域信息化水平的空间差异研究[J]. 长江流域资源与环境, 0, (): 0 .
[10] 何莎莎, 朱文博, 崔耀平, 何春龙, 叶露培, 冯小燕, 朱连奇, . 基于InVEST模型的太行山淇河流域土壤侵蚀特征研究[J]. 长江流域资源与环境, 2019, 28(02): 426 -439 .