长江流域资源与环境 >> 2020, Vol. 29 >> Issue (1): 174-186.doi: 10.11870/cjlyzyyhj202001016

• 生态环境 • 上一篇    下一篇

赣江上游典型流域水沙过程对全球气候变化的响应

丁倩倩1,刘友存2*,焦克勤3,卢峰4,黄赟4,边晓辉1,刘燕2
  

  1. (1. 江西理工大学建筑与测绘工程学院, 江西 赣州 341000;2. 江西理工大学资源与环境工程学院, 江西 赣州 341000; 
    3.中国科学院西北生态环境资源研究院,甘肃 兰州 730000;4.江西省赣州市水文局,江西 赣州 341000)

  • 出版日期:2020-01-20 发布日期:2020-03-25

Response of Water and Sediment Processes of Typical Watershed Upstream of Ganjiang River to Global Climate Change 

DING Qian-qian1, LIU You-cun2,JIAO Ke-qin3, LU Feng4, HUANG Yun4, BIAN Xiao-hui1,LIU Yan2    

  1. (1.School of Architectural and Surveying &Mapping Engineering, Jiangxi University of Science and Technology,
     Ganzhou 341000,China;2. School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, 
    Ganzhou 341000, China;3. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
    Lanzhou 730000,China; 4. Ganzhou Hydrographic Bureau of Jiangxi Province, Ganzhou 341000, China)

  • Online:2020-01-20 Published:2020-03-25

摘要: 剖析太阳活动与全球气候变化对地表水文要素的影响机制,能为区域水资源管理提供科学依据。根据1957~2015年逐月实测水沙资料,综合运用滑动平均、相关性、交叉小波和小波相干分析等方法,探讨了相关的全球气候指数对桃江流域水文要素的影响。结果表明:(1)7个全球气候因子与各水文要素的相关性有所不同。(2)全球气候涛动因子与降水、径流和输沙之间的显著共振周期主要集中在1.33~2.67 a;太阳黑子与降水和输沙之间的显著共振周期主要集中在11.00 a左右;降水与径流之间的显著共振周期主要集中在1.17~2.67 a。(3)太阳黑子活动通过 “El Nio-Southern Oscillation(ENSO)-西北太平洋反气旋/气旋环流-东亚季风”系统实现对研究区降水的影响。(4)南极涛动通过影响东亚季风的强弱来影响研究区的降水。北极涛动通过西太平洋副热带高压影响东亚冬季风,来实现对研究区降水的影响。太平洋-北美涛动和北大西洋涛动通过影响研究区的气流与风的异常来影响研究区的冬季降水。

Abstract: Interpretation on the mechanism of solar activity and global climate change on surface hydrological factors provides scientific guidance on the water resource management. This paper has adopted monthly measured runoff and sediment transport data from 1957 to 2015 in the Taojiang River Basin, one of the most important tributaries of the Ganjiang River, and the impact of the relevant global climate index on hydrological factors was discussed with sliding average, correlation, cross-wavelet and wavelet coherence analysis. Results showed that:(1) The correlation between the seven global climatic factors and hydrological factors is different; (2) significant resonance cycles between global climatic oscillation factors and precipitation, runoff, and sediment transport mainly focus on the period of 1.33 - 2.67 a, the significant resonance period between sunspots and precipitation and sediment transport is mainly concentrated around 11a. (3) Sunspot activity has an impact on precipitation in the study area through the “ENSO-Northwest Pacific Anticyclonic(Cyclonic) Circulation-East Asian Monsoon” system. (4) The influence of atmospheric oscillations on the precipitation in the study area is reflected in three aspects: first, Antarctic Oscillation affects precipitation in the study area by affecting the strength of the East Asian monsoon;second, Arctic Oscillation influences the East Asian winter monsoon through the western Pacific subtropical high, thus affecting the precipitation in the study area;third, Pacific-North American Oscillation and North Atlantic affect the winter precipitation in the study area by affecting the airflow and wind anomalies.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨 琳,何 芳,陈天明. 基于弹性理念的城市用地开发战略研究——以上海市宝山区为例[J]. 长江流域资源与环境, 2008, 17(3): 360 .
[2] 许有鹏,于瑞宏,马宗伟. 长江中下游洪水灾害成因及洪水特征模拟分析[J]. 长江流域资源与环境, 2005, 14(5): 638 -643 .
[3] 周国英, 李天才, 徐文华, 孙菁, 马海, 陈桂琛. 多年冻土区工程迹地人工恢复区植物和土壤的矿质元素含量特征[J]. 长江流域资源与环境, 2011, 20(2): 191 .
[4] 李思思,张亮,杜耘,刘蜀治. 面源磷负荷改进输出系数模型及其应用[J]. 长江流域资源与环境, 2014, 23(09): 1330 .
[5] 李志威, 王兆印, 贾艳红, 李文哲. 三峡水库蓄水前后长江中下游江心洲的演变及其机理分析[J]. 长江流域资源与环境, 2015, 24(01): 65 .
[6] 张玲玲, 王宗志, 李晓惠, 段文武. 总量控制约束下区域用水结构调控策略及动态模拟[J]. 长江流域资源与环境, 2015, 24(01): 90 .
[7] 高东东, 吴勇, 陈盟, 王春红. 贡嘎山森林系统小流域基流分割与降雨入渗补给计算[J]. 长江流域资源与环境, 2015, 24(06): 949 -955 .
[8] 陈心池, 张利平, 闪丽洁, 杨卫, 徐霞. 基于Copula函数的汉江中上游流域极端降雨洪水联合分布特征[J]. 长江流域资源与环境, 2015, 24(08): 1425 -1433 .
[9] 姚振兴, 陈庆强, 杨钦川. 近60年来崇明岛东部淤涨速率初探[J]. 长江流域资源与环境, 2017, 26(05): 698 -705 .
[10] 刘冀, 孙周亮, 张特, 程雄, 董晓华, 谈新. 基于不同卫星降雨产品的澴水花园流域径流模拟比较研究[J]. 长江流域资源与环境, 2018, 27(11): 2558 -2567 .