长江流域资源与环境 >> 2020, Vol. 29 >> Issue (7): 1497-1506.doi: 10.11870/cjlyzyyhj202007003

• 区域可持续发展 • 上一篇    下一篇

长江三角洲城市群PM 2.5时空演变及影响因素

王  昭1,严小兵2   

  1. (1 河海大学公共管理学院,江苏 南京 211100;2 常州大学瞿秋白政府管理学院,江苏 常州 213159)
  • 出版日期:2020-07-20 发布日期:2020-08-28

TemporalSpatial Evolution of PM 2.5 and Driving Factors in Yangtze River Delta Urban Agglomeration

WANG Zhao 1 ,YAN Xiao-bing 2   

  1. (1.Public Administration of Hohai University,Nanjing 211100,China;2. Qu QiuBai School of Government of Changzhou University,Changzhou 213159,China)
  • Online:2020-07-20 Published:2020-08-28

摘要: 科学识别PM 2.5 的空间分异及其驱动因素,是实现区域空气污染治理的关键。以国测点日均PM 2.5 浓度为数据来源,基于多种空间分析方法,研究长江三角洲城市群PM 2.5浓度的时空演变及影响因素。结果发现:(1)2013~2017年,长江三角洲城市群的PM 2.5年平均浓度,处于不断下降的趋势;城市间的差异,呈现逐渐减少的趋势。(2)一年中,12月份的PM 2.5浓度最高,8月份的PM 2.5浓度最低。1~12月,PM 2.5浓度先减后增。(3)2013年,PM 2.5高浓度区域主要分布在江苏省;2017年,PM 2.5高浓度区域主要分布在安徽省。5年间,PM 2.5浓度的空间重心,向安徽省转移72 km。(4)长江三角洲城市群PM 2.5浓度存在明显的空间自相关。存在PM 2.5浓度高-高值区、低-低值区“扎堆”现象,且集聚程度趋于增大。(5)影响PM 2.5浓度的因素包括了自然因素和社会因素。自然因素中,降雨与PM 2.5浓度显著相关。社会因素主要来自工业排放、交通排放和能源消耗。其中,能源消耗的影响程度最大,工业排放次之,交通排放最后。

Abstract: Scientific identification of PM 2.5 space differentiation and its driving factors is the key to regional air pollution control. Taking the daily average PM 2.5 concentration of national measure points as the data source, the spatiotemporal evolution and influencing factors of PM 2.5 concentration in Yangtze River Delta Urban Agglomerations were studied based on various spatial analysis methods. The results showed that: (1) From 2013 to 2017, the annual average concentration of PM 2.5 in the Yangtze River Delta Urban Agglomerations was on a declining trend; the differences among cities showed a gradually decreasing trend. (2) The concentration of PM 2.5 was highest in December and lowest in August. From January to December, the concentration of PM 2.5 decreased first and then increased. (3) In 2013, the high concentration area of PM 2.5 was mainly distributed in Jiangsu Province; in 2017, the high concentration area of PM 2.5 was mainly distributed in Anhui Province. In the past five years, the spatial barycenter of PM 2.5 concentration shifted 72 km to Anhui Province. (4) There was obvious spatial autocorrelation of PM 2.5 concentration in Yangtze River Delta Urban Agglomerations. In addition, there was a phenomenon of "flock together " for highhigh value area and lowlow value area of PM 2.5 concentration, and the agglomeration degree had an increasing trend. (5) The influencing factors of PM 2.5 concentration include natural factors and social factors. Natural factors found that rainfall is now related to PM2.5concentration. Social factors mainly come from industrial emissions, traffic emissions and energy consumption. Among them, the impact of energy consumption was the largest, followed by industrial emissions, traffic emissions ranked last.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈鲜艳, 张强, 叶殿秀, 廖要明, 祝昌汉, 邹旭恺. 三峡库区局地气候变化[J]. 长江流域资源与环境, 2009, 18(1): 47 .
[2] 陈 勇,陈国阶,杨定国. 岷江上游聚落分布规律及其生态特征——以四川理县为例[J]. 长江流域资源与环境, 2004, 13(1): 72 -77 .
[3] 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125 -131 .
[4] 王宜虎. 江苏沿江各市工业绿色化程度的模糊评价[J]. 长江流域资源与环境, 2008, 17(2): 170 .
[5] 田晓四, 陈 杰,朱 诚,朱同林. 南京市经济增长与工业“三废”污染水平计量模型研究[J]. 长江流域资源与环境, 2007, 16(4): 410 .
[6] 闵 骞,刘 影,马定国. 退田还湖对鄱阳湖洪水调控能力的影响[J]. 长江流域资源与环境, 2006, 15(5): 574 -578 .
[7] 班军梅,缪启龙,李 雄. 西南地区近50年来气温变化特征研究[J]. 长江流域资源与环境, 2006, 15(3): 346 -351 .
[8] 刘滨谊,刘 琴. 服务于城市旅游形象的景观规划——以南京市为例[J]. 长江流域资源与环境, 2006, 15(2): 164 -168 .
[9] 李晓文,方精云,朴世龙. 上海城市土地利用形成、变化及其空间作用机制[J]. 长江流域资源与环境, 2006, 15(1): 34 -40 .
[10] 许有鹏,于瑞宏,马宗伟. 长江中下游洪水灾害成因及洪水特征模拟分析[J]. 长江流域资源与环境, 2005, 14(5): 638 -643 .